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Abstract. Some of the subtleties of the integrability of the elliptic quantum billiard are
discussed. Considering a well known classical constant of the motion in the quantum case,
we find that a naive calculation of the commutator with the Hamiltonian does not show whether
or not it is zero. It is shown how this problem can be solved. A geometric picture is given that
reveals why levels of a separable system cross. It is shown that the repulsions found by Ayant
and Arvieu are computational effects and that the method used by Traiber et al is related to the
present picture which explains the crossings they find. An asymptotic formula for the energy
levels is derived and it is found that the statistical quantities of the spectrum P(s) and Az(L)
have the form expected for an integrable system.

1. Introduction

Although non-relativistic quantum mechanics is a well understood theory, about two decades
ago a question arose which is still not completely answered. We know that chaos in classical
mechanics is due to nonlinear terms in the equations of motion. Thé@ober equation is

linear, so there should be no quantum chaos. However, classical mechanics is supposed to be
some limit of quantum mechanics, so what is the equivalent of chaos in quantum mechanics?
By now quite some theory has been developed to answer that question [1]. The presence of
chaos can be seen in the spectrum of the Hamiltonian and its statistical properties. Onvarying a
parametee of the system, two levels could approach one another. In an integrable system, they
will continue to approach and cross wheis changed further, but in non-integrable systems,

the levels will avoid crossing: they repel. Much research is being done on this topic of
‘quantum chaos’ [2]. The assumptions underlying these (and other) predictions are not linked
rigorously to the integrable and non-integrable nature, although in most cases they seem to
hold. Usually, one investigates chaotic systems and determines the statistical properties of the
spectrum. Seldom is an integrable system considered, even though such systems are not as
trivial as one might expect.

In this paper we look at the elliptic quantum billiard. This billiard is often taken as a
reference system for some non-integrable variants [3, 4], and its integrability is taken for
granted. An extensive semiclassical survey, as well as numerical solutions to the exact
eigenvalue problem, can be found in [5]. We take a closer look at the subtleties of the
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integrability of this billiard. The existence of the second conserved quantity will be investigated
in a limiting scheme, involving a larger class of separable systems. Level crossing will be
investigated and two statistical properties of the spectrum, namely the distribution of level
spacingsP (s) and the rigidityA (L) [6, 7] are used to establish whether the systemisintegrable.

2. The elliptic billiard

The elliptic billiard is defined as a particle moving in a two-dimensional potential well with
an elliptic boundary. Classically, this system has a second constant of motion: the product of
the angular momentumi with respect to one focal point and the angular momentuwith
respect to the other focal point [3-5, 8]. This quantity has the same value before and after a
collision of the particle with the wall, as well, of course, as during its rectilinear motion. This
means that the system is integrable, but there are some subtle points that have not been noticed
in the literature.

In the quantum version, the Hamiltonian is that of a free particle on the interior of the
ellipse. The wavefunction should vanish on the elliptic boundary that acts as an impenetrable
wall. In realistic physical situations, the wall may not be totally impenetrable, which we could
mimic by a smooth potential which is very steep around the ellipse. The boundary condition
is replaced by the normalization condition. As we make the potential steeper, we expect the
system to look more like the billiard. We formulate the smooth problem in elliptic coordinates:

x = f coshz cos
y = fsinhzsiné

so that the focal points are &t f, 0) and( f, 0). Lines of constanf are hyperbolae. Lines
of constant; are ellipses. The boundary is the ellipse= z;,, of which the eccentricity is
€ = 1/coshz,. The limit to circular coordinates can be obtained by putting %f exp(z),
and letting f tend to zero while remains finite. Defining

M(z,0) = coslf z — cos 6
the HamiltoniarH and£ = (I1 I + [, [1) /2 take the form

H= m(pf + P2+ V(z,0)
and
L= ;(sinhzz pZ —sir 6 p?).
M(z,0) <
wherep, = —ihd, andpy = —ihdy. The smooth potentidl (z, ) is almost zero for < z,
and very large for > z,. A conserved quantity should commute wih but in fact
[, c] = -2 sirts (RO2V + 2ip,d.V) + hs'nhzz(ﬁagv + 2ipady V).

M(z,0) M(z,0)

so in general is not conserved. As the potential becomes ste@p&r— oo, SO we cannot

even see ifC becomes conserved in this limit, and one might question the integrability of the
system. For the circular billiard, this problem does not arise: for any potential which only
depends om, the angular momentum commutes with the Hamiltonian. Ayant and Arvieu [9]
calculated a few of the lowest-energy eigenvalues of the elliptic billiard and plotted them as
a function of the eccentricity. Repelling levels are seen—a sign of non-integrability. Traiber
et al [10] have shown numerically that these repulsions are actually crossings. They admit,
however, that the crossings they find have not been established rigorously. In section 3 we will
show how the picture of the integrable billiard as a limit of steep but smooth potentials can be
restored.
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The billiard problem, given byw = 0 andW¥(z = z,) = 0, is separable in elliptic
coordinates. If we substitute

W(z,0) = N(z2)®()

2h%q
~omf?
in the time-independent Sdbdinger equatio{¥ = EW, we obtain
320 4 (a — 2qcosP) O =0 1)
32N — (@ —2gcosh2) N =0 2)

in whicha is a separation constant. Becausandg appear in both equations the eigenvalue
problem is not easily soluble (it also raises computational problems [5, 10]). These equations
are called the Mathieu equation and the modified Mathieu equation, respectively. Their
solutions are Mathieu functions [11, 12]. Due to symmetry, we can restrict ourselves to one
guadrant, imposing Dirichlet or Neumann boundary conditions onxtheis and they-axis.

This gives the standard four classes of solutions. The conditio@fatd = 0 and forN

atz = 0 are both the same as the boundary condition orxthgis. The condition fo® at

0 = 7/2 is the boundary condition on theaxis. Furthermorey should satisfy the Dirichlet
condition atz = z,. If we fix g, there exist countably many valuesaofor which equation (1)

has a solution. Solutions satisfying Neumann (Dirichlet) conditiorts at0 are callecce,,
(sem+1).- Theindexn runs from zero to infinity. Ifz is even, the solution satisfies the Neumann
condition at? = /2. If it is odd, the Dirichlet condition is satisfied.

3. Separability

We return to the smooth problem and make an ansatz for a conserved géantibe classical
system of the fornZ = £ + 2mf? Y (z, 6). We require that
5 _ DY 40V SiN? 6) + pe(8yY — 3V sintf z)
M(z,0)/2
be zero for alp,, ps). Froma,dyY = 9,0,Y we find thatV has to be of the special form
Vi(z) + V2(0)
M(z,0)

This is the class of separable systems [13, 14] of which the elliptic billiard is a limiting case.
Y is given by

V(z,0) =

Vo(9) sinkPz — Vi(z) sinfe
M(z,0) ’

It can be shown that{, Z] = 0 for all smooth choices df; andVs. In the limit of the elliptic
billiard, V, = 0 andV; is taken to be zero inside the ellipse and infinite outside. Then
is formally equal toV. If in the limit the infinite potentialV is to be replaced by Dirichlet
boundary conditions on eigenfunctionsif the similarY contribution toZ is to be replaced
by Dirichlet boundary conditions on the eigenfunction€ofT he eigenfunctions af will lie
in the same Hilbert space as thosettfIn fact, the eigenvalue problem gfis equivalent to
that of H: we end up with the same equations (1) and (2). The eigenvaluésue given by
(a — 2¢)R?. Therefore all solutions of these equations are eigenfunctions of#sathd L.
Thus they form a basis on which both operators are diagonal, so the two operators commute.
This equivalence between the eigenvalue problems, however, also meafissiwdtno help
in finding the general solution.

There are only four types of billiards in two dimensions that have a second constant of
motion which is quadratic in the momenta [13] and have non-complex Hamiltonians. They

Y(z,0) =
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correspond to rectangles, circles, ellipses and hyperbolae, and parabolae. The parabolic
billiard, which has a boundary composed of two opposite parabolae with the same focal
point, also has the subtleties of coupled separated equations like equations (1) and (2) and a
commutator of a classically conserved quantity with a smooth Hamiltonian, which is zero only

in a specific limiting procedure.

4. Characteristic curves

It is possible to use the separability of the system to explain why crossings occur. For that
we need to view equation (1) as an eigenvalue problem, avitle eigenvalue ang some
parameter. This boundary value problem is of the Sturm—Liouville type, so the spectrum
contains an infinite, countable number of only simple eigenvalues bounded from below [15].
We denote these eigenvalueshy(q), wheren is the same index as in section 2 griddicates
the dependence of the eigenvalue on the parameterom the simplicity of the eigenvalues
it follows that they depend at least piecewise continuously oi®verall continuity can be
deduced by performing a small rotati@tf, ') = Ry (a, ¢) in equation (1) withR, a rotation
over an arbitrary but sufficiently small angde This again gives a Sturm—Liouville problem,
so in the rotated frames/, (¢’) has to be piecewise continuous too, anfg) cannot be
discontinuous. Equation (2) can also be seen as an eigenvalue problem of the Sturm—Liouville
type, but withg as the eigenvalue andas the parameter. We denote the eigenvalues of this
problem withg, (a), where the index runs from one to infinity. The, (a) can also be seen to
be continuous.

We can consider the graphs of the eigenvalygg) as a set of lines in they, a)-plane
which do not intersect, and we call those theurves. The same picture can be used for the
graphs ofg, (a), which are theg-curves. Since the values gfanda in the two equations
have to agree, a solution to the problem exists for every intersection point of the two sets
of curves. The values ofi andr can be considered the quantum numbers of that solution.
We determined some of the lower ones of these so-called characteristic curves numerically,
using a discretization of equations (1) and (2) and applying the QL algorithm on the resulting
tri-diagonal matrices [16]. For equation (2) we took the boundagy, at 2, corresponding
to an eccentricity of 1/(cosh 3. The results are plotted in figure 1. The eigenvalue of the
Hamiltonian is proportional to thg-value, i.e. the projection of the intersections of the
andg-curves on they-axis. If two points are close together in projection on ghaxis, this
does not mean that they are close in thea)-plane. Wherx is changed, thg-curves shift
and the intersection points move. The projections of two points can move towards each other,
but that does not in general correspond to approaching points or any other special case in the
(¢, a)-plane, so they will continue to move in the same direction whénchanged further.
Thus they will cross.

We can now understand the different results of Ayant and Arvieu [9] and Traiber
al [10]. Traiberet al [10] used an algorithm which enabled them to calculatedthalue
for given g numerically, which are in effect the-curves. Via a kind of Newton—Raphson
procedure they found the eigenvalugsf the modified Mathieu equation. From the above
discussion, it is no surprise that in their figure the levels cross. Ayant and Arvieu [9] did
not obtain the eigenvalues one by one. They chose a basis of the Hilbert space to turn the
eigenvalue problem fo#{ into that of a matrix. Truncation of this matrix gives a finite
one, of which the eigenvalues can be calculated numerically. Due to roundoff errors, a
diagonalization routine can gives spurious repulsions. Ayant and Arvieu [9] do not say
what kind of diagonalization method they used. As is shown in figure 2, using a method
that can handle degeneracies (first applying the Householder method to obtain a tri-diagonal
matrix, then applying the QL algorithm [16]), one finds the correct crossings that were
also found by Traibeet al [10] in a different way. The matrix size was 9898 and

nw=1/v/1— e
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Figure 1. The two independent sets of characteristic curves. The solid curves are the
a-curves corresponding to the solutians,, 1, and the dashed curves are theurves
for eccentricitye = 1/(cosh 3.
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Figure 2. Crossing lower-energy levels as a functionuof 1/4/1 — €2. The energy is
given in units of2?/2mf?)(u — n=b), as in Ayant and Arvieu [9] and Traibet al [10].

5. Asymptotic results

According to current theory [6], random matrix theory can be used for non-integrable systems.
One finds thatP(s) = %7‘[ s e 37 and thatA(L) grows logarithmically withZ in the
‘Gaussian orthogonal ensemble’. The fact ti#g0) = 0 is a sign of level repulsion. For
integrable systems one expects ti®qt) = e~*, which is the distribution of level spacings
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in the case where the levels are Poissonian distributed, and\ifiat grows asL /15, for
non-degenerate levels, up to a saturation point beyond whi@) remains constant [7]. A
reliable calculation o (s) andA (L) requires many energy levels. We will use an asymptotic
approach to calculate the high-energy eigenvalues. We follow the Horn-Jeffreys method as in
McLachlan [11] and Arscott [12]. We write(g) as an asymptotic expansion in powers of
k=./q

o0

a = —2k?+22m + Dk + ag + Zaik#.

i=1
The asymptotic form of the Mathieu equation can be written as the equation for the harmonic
oscillator, hence the integer constamt This m is the same index as before. Thisis
asymptotically on thes,-curves corresponding to the solutions, andse, ;. For the
expansion of9 we use

() ~ e’““@);(e)[l + Zk—iﬁw)].
i=1

These expressions are substituted in equation (1) and terms of equal powears iaquated.
There are two independent solutions. The first is given by

£(0) = [cosh tart™*1(6/2 + n /4]~ Y?
x(0) = 2sind

0 92(f i v
fia(0) = —/ WO ol g
4t cosy’

where, by definition,fo = 1. In [11] only terms up tofp are included to find eigenvalues.
The spectrum that is found is equivalent to a two-dimensional harmonic oscillator. Berry and
Tabor [17] have calculate#t (s) for this system. For some ratios of the frequencieg) is
not defined. For other ratio$)(s) shows some peeked behaviour, but not-algehaviour.
They also showed tha(s) can again approachr&when the system is perturbed. Including
/1 could have the same effect. From equation (3) we find

A =(m?*+m+1)sing +2m +1 ) 1 0 7
f1(9)—§[ o0 —(m +m+§+2ao)logtar(§+z> )

In order to obtain periodic solution we have to set the logarithmic term equal to zero, so
a0 = —(2m? + 2m + 1)/4. This is the general strategy for obtaining thés. By induction
from equation (3) the general form @f can be seen to be

L b +af sing

fi0) = ,; co$/ 6
The second independent solution of equation (1) is found by substitutinipr 6. For ce-
type solutions, the boundary conditionbat= 0 can be fulfilled usinge,, « ®(0) + ®(—0).
The modified Mathieu equation (2) can be found from the standard Mathieu equation (1)
by substitution of # for 8. The resulting solution is called’e,,(z). Thus Ce,(z)
O(iz) + ©(—iz) is a solutions satisfying the condition at= 0. The eigenvalues are now
given by the Dirichlet boundary condition at= z;, so that the phasé(z,,) of ®(iz;) should
be (r + y)m, wherer is the same index as in section 4 and= % For se-type solutions, we
start withse,, o« ®(0) — ©®(—0), and we find the same requirement, but with= 0. The

phase can be expressed in terms afd the” andb|":

Ji=e = Vi Y Y Pk
®(zp) ~ 2k < (2m + 1) arcta =€ + arcta @ 2 Z’ ! GREY }
€ 1+e€ € 1+3 Zjbjl €2if—i

®)
9/
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Figure 3. P(s) for eccentricity 0.80. The bars are the calculated points; the dashed
line is the theoretical prediction for an integrable system. The inset shas for

the same eccentricity. The solid line consists of calculated points; the dashed line is
the theoretical predictios (L) = L/15 for smallL for integrable (non-degenerate)
systems. For largé the prediction is that\ (L) saturates.

which should be equal t6- + y)x. Using the form off;, we obtain the first-order equation
for k:

1\ wo w1 mi4+m+1
k= =) =+ —arctarfeyl—€2—n——— 4
(r+y)w1+<m+2> 2+n ri:e 68k~|—62(2m~|—1)] 4

where

TE w2 4 1—¢
0w = ———— —< = —arcta

2J1—¢2 w7 1+€

The accuracy improves abecomes larger ardgets closer to one. Fer= 0, corresponding
to the circle, it is not a good approximation. Equation (4) is a transcendental equatigindor
be solved for each pair of quantum numberandr. The lowest-order eigenvalues, given by
the first two terms in (4), form a set of lines in the k)-plane, one line for every pair, m).
Lines with equak but differentr are shifted in thé direction by a multiple ofv1, which is
not zero except at = 0, so they will never cross far > 0. However, lines with differeni
do cross, at least to lowest order. The correction term in equation (4) can be seen to be at most
w1/2. This determines a band in tkig ¢)-plane to which the lines are certainly confined. If
the lines remain continuous when all orders are taken into account, then they have to intersect
in some point in the area where these bands overlap.idfdetermined byf (k, ¢€) = 0, the
implicit function theorem states thate) is continuous provided thaf f (k, €) # 0. One can
easily check that this is the case for equation (4), so the solution is continuous and crossing is
inevitable.

We solved equation (4) numerically, for about 15 000 levels ofcthgype, for evenn.
We took the 10 000 largest of those to compit@) and A(L). For the unfolding of the
spectrum [18] we took for the accumulated level density

(k + w2/2 — w1)? — (2 + w3) /12
2w1w2

N(k) =
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which follows from the eigenvalues calculated to lowest order. The results are shown in figure 3
for eccentricitye = 0.8. We see the expected behaviour for integrable systems. The graphs
look roughly alike for all other values &f, although for some values of the eccentricity, the
first correction term in equation (4) cannot totally restore thelehaviour, namely when
wy/w1 is arational number = p/q, which is ate = coqzxr/2). This is most pronounced for
ratiosz of 1, 2 and2.

6. Conclusions

It is possible to define a second constant of motion for the elliptic billiard, as a limiting case
using smooth potentials, which are included in this quantity. Separability does not mean we
can solve the system, but it does provide a geometric picture in which the energy eigenvalues
are projections of intersections of characteristic curves. As the curves change continuously
when the eccentricity is varied, the energy levels will cross generically. The level repulsions
found in Ayant and Arvieu [9] were not correct, due to the diagonalization method used.
Traiberet al [10] effectively used the characteristic curves, and therefore the crossing levels
that we expect were found. The separability also allows for an asymptotic method to obtain the
spectrum, which does indeed give results characteristic of integrable systems. So the elliptic
billiard turns out to be an ordinary integrable system, despite the subtleties in the formalism.
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