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Abstract

It is generally believed that the dynamics of simple fluids can be
considered to be chaotic, at least to the extent that they can be mod-
eled as classical systems of particles interacting with short range, re-
pulsive forces. Here we give a brief introduction to those parts of
chaos theory that are relevant for understanding some features of non-
equilibrium processes in fluids. We introduce the notions of Lya-
punov exponents, Kolmogorov-Sinai entropy and related quantities us-
ing some simple low-dimensional systems as “toy” models of the more
complicated systems encountered in the study of fluids. We then show
how familiar methods used in the kinetic theory of gases can be em-
ployed for explicit, analytical calculations of the largest Lyapunov ex-
ponent and KS entropy for dilute gases composed of hard spheres in
d dimensions. We conclude with a brief discussion of interesting, open
problems.

1 Introduction

We consider here a classical many-particle system, a gas of hard spheres or
of hard disks. Our principal concern will be to develop methods by means
of which we can understand and calculate the properties of such gases as
chaotic dynamical systems. It is, of course, well known that to describe the
macroscopic, equilibrium properties of such gases, we can easily dispense
with any knowledge of most of the dynamical properties of the particles of
which the gas is composed. That is, one can use thermodynamics and equi-
librium statistical mechanics, i.e. statistical thermodynamics, to describe
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the relevant equilibrium properties of the gas. All of the relevant micro-
scopic properties of the system needed for statistical thermodynamics are
contained in the partition sum, which is defined in terms of the Hamiltonian
of the system. The partition function is based on a probability measure on
phase space. The macroscopic properties are simply related to averages with
respect to this measure, of certain microscopic expressions. Of course it is
far from trivial to compute these averages for anything like a real physical
system.

Our interest here, though, is to consider a gas as a mechanical system
and to understand its behavior in time, rather than its equilibrium proper-
ties, and to try to make quantitative statements about the motion of the
trajectories of the phase points that describe the gas, in the usual 2Nd-
dimensional phase-space, Γ-space, of the system, where N is the number of
particles, d the number of the spatial dimensions of the system, d = 2 or 3,
and the phase-space has dN spatial coordinates and dN momentum coordi-
nates. We take the particles to be identical hard spheres or hard disks, each
of mass m and diameter σ. When we wish to describe the typical or aver-
age properties of the system, we must start with the specification of some
useful probability measure, with respect to which averages can be defined.
Any dynamical system, therefore, consists of: 1) a space Γ, 2) a measure
µ(A), A ⊂ Γ, and 3) a transformation S : Γ → Γ. We will see that the dy-
namical viewpoint can explain some features of macroscopic systems from
their microscopic behavior. The explanations can be followed most easily
in dynamical systems of very low dimensionality. However, even in simple
low dimensional systems, dynamics may become so complicated that is is
effectively impossible to follow the dynamics for long time, starting from
a typical initial point, and we will be forced to consider typical behaviors
using some appropriate probability measure. Our interest will be focused on
chaotic systems which have the property that any uncertainty in the spec-
ification of the exact initial state of the system will grow exponentially in
time, to the point where the future of a phase-space point can no longer be
predicted to within a reasonable accuracy[1]. But we can still say something
about probabilities.

It turns out that there is a close connection between the chaoticity of
the system and issues like irreversibility on the macroscopic level and, for
a gas of particles that interact with short-range forces, the validity of ki-
netic theory[2]. This connection will first be outlined in section 2, for low
dimensional systems. A more extensive treatment can be found in Ref. [3].
In section 3 we return to a high dimensional system in the form of a hard
sphere gas in equilibrium. At low densities we can use kinetic theory to
calculate a measure of chaoticity called the largest Lyapunov exponent. In
section 4 another chaotic characteristic of this system is calculated using
kinetic theory: the Kolmogorov-Sinai entropy. In section 5 we make some
concluding remarks and present some open questions.
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2 Dynamical Systems

The standard approaches to the theory of non-equilibrium processes in flu-
ids are based on three foundational pillars: (1) The identification of the
macroscopic quantities of physical interest as averages of microscopic quan-
tities over an appropriate ensemble of similarly prepared systems; (2) The
use of the Liouville equation, either in its classical or in its quantum me-
chanical version, to compute the time evolution of the ensemble distribu-
tion function; and (3) The utilization of some kind of physically reasonable
factorization assumption for the ensemble distribution function in order to
transform the Liouville equation into a tractable equation whose solution
can be used to make quantitative statements about the macroscopic quan-
tities. Such a procedure is followed in the derivation of the Navier-Stokes
fluid dynamic equations from the Liouville equation[4] for general fluids, and
in the derivation of the Boltzmann transport equation, and its extensions
to higher densities, from the Liouville equation for dilute and moderately
dense gases. More phenomenological approaches to irreversible behavior in
fluids often depend on explicit stochastic assumptions about the underlying
dynamical processes taking place in the fluid[5].

While they are of the highest importance for the development of theories
of irreversible processes in fluids, both of these approaches to irreversible be-
havior leave the answers to some fundamental questions obscure. In partic-
ular, these approaches offer only qualitative insights into the reasons for the
validity of the stochastic assumptions imbedded in these various procedures
– either through factorization assumptions, which in essence, are statements
about correlations and probabilities – or through the replacement of the
exact dynamics by a stochastic, Langevin-type, dynamics. Further, while
the approaches outlined above do predict an approach to an equilibrium
state, under the proper physical conditions, and do provide experimentally
verifiable statements about the approach to equilibrium, they do not give a
complete picture of why the system approaches an equilibrium state, based
upon the underlying microscopic dynamics. The general arguments for the
use of stochastic methods are based upon the randomness of the microscopic
motions of the particles but are not much more specific than that. The pic-
ture that we have of the approach to equilibrium is generally based on the
idea that the local averages of conserved mechanical quantities, such as mass,
momentum, and energy, change very slowly in time compared to the local
averages of nonconserved quantities. Thus the macroscopic behavior will be
dominated by the slowest variables in the system, the local conserved quan-
tities, and the equilibrium state will be achieved when these quantities have
reached steady, homogeneous values. This picture, suggested by solutions
of the Boltzmann equation, has led to important advances in the theory of
fluids, among others, to mode-coupling theory. What is missing from it is a
basic understanding of the necessary (or sufficient) properties of the inter-
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molecular potential for the system to approach an equilibrium state, as well
as an understanding of the properties of the trajectories of the system, and
the evolution of measures in Γ-space, that are responsible for the approach
to equilibrium states and, perhaps, under different boundary conditions, to
more complicated, but interesting non-equilibrium steady states.

The application of ideas from dynamical systems theory to non-equilibrium
statistical mechanics allows us to make some progress in resolving the issues
described above. The application of ideas from chaos theory, in particular,
enables us to make some quantitative statements about the type and degree
of randomness of a dynamical system, even of large systems typically treated
by statistical mechanics. It also allows us to describe equilibrium and non-
equilibrium states of a system in terms of probability measures defined in
Γ-space, and in terms of the time evolution of these measures. Moreover,
there are interesting and unexpected connections between the macroscopic
transport coefficients that describe the approach of a fluid to equilibrium,
and microscopic quantities that describe the chaotic behavior of a fluid, con-
sidered as a large, dynamical system. In this section we will outline some
of these rather new ideas, and illustrate their applications to statistical me-
chanics by seeing how they work for systems of low dimensions and then
generalizing them, when possible, to higher dimensional systems. We be-
gin with a very simple two-dimensional reversible system, the baker’s map,
which exhibits many of the features we would like to see in more general,
higher dimensional systems.

2.1 The baker’s map

The simplest example of a reversible system with chaotic dynamics is prob-
ably the baker’s map. Here we consider a two-dimensional phase space on
a unit square. That is, Γ = (x, y); 0 ≤ x, y ≤ 1. The map, B, operates only
at discrete time steps, and moves points (x, y) to B(x, y) = (x′, y′) given by

B

(

x
y

)

=

(

x′

y′

)

=

(

2x
y/2

)

for 0 ≤ x < 1/2; and

=

(

2x − 1
(y + 1)/2

)

for 1/2 ≤ x < 1. (1)

This map is illustrated in Fig. 1. It is immediately clear that this map
possesses an inverse, B

−1, given by

B
−1

(

x
y

)

=

(

x/2
2y

)

for 0 ≤ y < 1/2 and

=

(

(x + 1)/2
2y − 1

)

for 1/2 ≤ y < 1. (2)
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Figure 1: The baker’s transformation.

The baker’s map is clearly area-preserving, and it is time-reversible in
the sense that the transformation T : (x, y) → (1 − y, 1 − x) serves as a
time reversal transformation for this map, such that T ◦B ◦T = B

−1, and
T ◦T = 1, where 1 is the unit operator.

Now we regard the unit square as a “toy” phase-space. The dynamics
of the baker’s map in this phase-space has the following properties: 1) Con-
sider two infinitesimally separated points. Unless they have exactly the same
x-coordinates, or the same y-coordinates, the images of these two points
under several applications, called iterations, of the map B will cause the
x-components to separate exponentially with the number of applications,
with an exponent of λ+ = ln 2, whereas the y-components will converge
exponentially to a common value with an exponent of λ− = − ln 2. The ex-
ponents, λ±, characterizing exponential separation or convergence of points
in phase-space are called Lyapunov exponents. The directions in which the
points converge exponentially, in this case just the y-direction, are called
stable directions, and the directions in which they separate exponentially, in
this case the x-direction, are called unstable directions. The fact that the
Lyapunov exponents sum to zero is a simple consequence of the area pre-
serving property of the baker’s map, as can easily be seen by considering the
evolution, with successive iterations, of the small rectangle with corners at
(x, y), (x + δx, y), (x, y + δy), (x + δx, y + δy) under the baker map, B. This
rectangle has constant area, but grows exponentially long in the x-direction,
and exponentially thin in the y-direction. Sooner or later it gets stretched
and folded in such a way that on a coarse grained scale, the unit square is
covered uniformly. We will describe this behavior on a coarse-grained scale,
by saying that the distribution of points becomes weakly uniform. It is im-
portant to note that the projection of the small rectangle onto the x-axis
will be uniform in a time, nu on the order of

nu ∼ − ln δx

λ+
, (3)

where λ+ = ln 2, is the positive Lyapunov exponent for the baker’s map.
That is, the projection of the small rectangle on the unstable direction be-
comes uniform much sooner than the distribution of points on the entire
unit square becomes weakly uniform.
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2.2 The Arnold cat map and hyperbolic systems

A different map with a similar dynamical behavior, i.e., area preserving,
with exponentially separating and converging trajectories characterized by
positive and negative Lyapunov exponents, is provided by the Arnold cat
map, T(x, y), illustrated in Fig. 2, and given by

(

x′

y′

)

= T

(

x
y

)

=

(

2 1
1 1

)(

x
y

)

mod 1. (4)

The area preserving property is guaranteed by the fact that the matrix rep-
resentation of T has unit determinant, the integer coefficients of the matrix
together with the mod 1 condition implies that the unit square, or more
properly, the unit torus, is mapped smoothly onto itself by T. Such area
preserving maps with integer coefficients are called toral automorphisms.
The Arnold cat map also has stable and unstable directions associated with
positive and negative Lyapunov exponents given by λ± = ln[(3 ± √

5)/2].
In a way much like the baker’s map, a small region of the unit square will
be stretched and squeezed under the iterated action of the cat map, with
projections on both the x and y-axes becoming uniform on a similar time
scale as in Eq. (3), and with the distribution of points becoming weakly
uniform on a longer time scale.

The baker’s map and the Arnold cat map are two simple examples of
what are called hyperbolic dynamical systems. Briefly, and somewhat loosely
stated, hyperbolic dynamical systems are defined by the action of some
dynamical transformation, S on a phase-space Γ, such that: (a) one can
identify stable and unstable directions in Γ, under the action of S, with
negative and positive Lyapunov exponents, all bounded away from zero;
(b) the stable and unstable manifolds (lines, surfaces, etc.) are continuous
functions of the variables that define the phase space, and when the two
manifolds intersect, they do so transversely; (c) the system is transitive,
i.e., there exists some trajectory in the phase-space that is dense on the
phase-space; and (d) for maps, i.e., for dynamical systems where S acts only
at discrete times, there are no directions in phase-space with a Lyapunov
exponent of zero, while for “flows”, i.e. systems where S depends upon a
continuous time parameter, the only direction in Γ with a zero Lyapunov
exponent is the direction of the flow. Clearly the baker’s map and the Arnold
cat map are hyperbolic maps. A typical flow that one might examine for
hyperbolicity is the motion of a phase point on surfaces of constant energy
for a system of interacting particles.

2.3 Ergodic and mixing systems

The baker’s map and the Arnold cat map are also examples of dynami-
cal systems which are ergodic and mixing. Ergodicity is the property of a

6



10

1

2

y

2 3 x

x

y

x

y

Figure 2: The Arnold cat map.

dynamical system that the time average of any integrable function of the
phase-space variables will be equal to the ensemble average of this function,
the average taken with respect to an appropriate time translation invariant,
equilibrium measure. That is, if f(Γ) is an integrable function, then

lim
n→∞

1

n

n−1
∑

j=o

f(SjΓ) =

∫

f(Γ)µ(dΓ), (5)

where µ(A) is a measure that is invariant, i.e., µ(A) = µ(S−1A) for any
non-trivial set A, and ergodic, meaning that it is impossible to divide the
whole phase-space into two invariant sets, each of positive measure1. It is
generally assumed, but not always proved, that our systems possess a unique
ergodic measure. Students of statistical mechanics will naturally associate
the idea of an ergodic system with the name of Boltzmann who used this

1Eq. (5) doesn’t have to hold for all points Γ, as long as the set of points violating it
has measure zero, with respect to the measure in the definition of the dynamical system.
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idea to base equilibrium statistical mechanics on the laws of mechanics2.
Much of equilibrium statistical mechanics can be based on the laws of

large numbers, and strict ergodicity, in the sense of Boltzmann, is not that
essential. However, non-equilibrium statistical mechanics requires some deep
underpinnings from mechanics, or from the theory of stochastic processes.
Here we take the point of view that Hamiltonian mechanics is all that is
needed, but that is certainly not the only possible point of view. For non-
equilibrium statistical mechanics, it is useful to explore an idea of Gibbs,
which is called the mixing property of a dynamical system. Mixing systems
are always ergodic, but the reverse is not always true. To define a mixing
system, we consider two arbitrary sets in the phase-space, A and B, say,
both of nonzero measure, and the evolution of the set A in time. Suppose
after n iterations of the map S the set A has moved to S

nA, then the system
is mixing if

lim
n→∞

µ(B ∩ S
nA)

µ(B)
=

µ(A)

µ(Γ)
, (6)

where µ(Γ) is the measure of the entire phase-space, such as the unit square
for the baker’s map or the cat map, or the constant energy surface for a
more general system. The mixing condition simply means that the time
evolution of a set in phase-space is such that, in a coarse grained sense, it
gets uniformly distributed, with respect to the measure µ, over the entire
phase-space. It can be proved rather easily that for a mixing system, non-
equilibrium averages of integrable functions f will approach their equilibrium
values in the course of time.

2.4 The approach to equilibrium

A nice illustration of the approach to equilibrium, as provided by baker
or cat maps, is to consider the behavior in time of reduced distribution
functions. That is, if we think of the unit square, again, as a phase space,
then we can define a phase-space distribution function, ρn(x, y), as a function
of the number of iterations of the map, n, and the coordinates x and y.
The phase-space distribution function satisfies a discrete-time version of the
Liouville equation, which is a form of the Frobenius-Perron equation for area
preserving maps. The appropriate equation is

ρn(x, y) = ρn−1(B
−1(x, y)), (7)

which, written out in full detail, becomes

ρn(x, y) = ρn−1(x/2, 2y) for 0 ≤ y < 1/2

= ρn−1((x + 1)/2, 2y − 1) for 1/2 ≤ y < 1. (8)

2Traditionally, statistical mechanical systems were called ergodic if they are ergodic
under Hamiltonian flow with the Liouville measure on the energy shell.
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A similar, but somewhat more complicated equation could be given for the
Arnold cat map, but we will not use it here.

For these simple two dimensional models, a reduced distribution func-
tion is obtained by integrating the distribution function over one of the two
phase-space variables, x or y. This integration is motivated by the fact that
for a system of N particles, we are not particularly interested in the full
N -particle distribution function, but rather in the one or two-particle distri-
bution functions that can be used to evaluate the macroscopic quantities of
interest, such as mass, momentum, and energy densities. Since our simple
maps have only two coordinates, we can only consider the very simple case
where a reduced distribution function is obtained by integrating over one
of the coordinates. For the baker’s map we will construct the distribution
function for the density of points in the x-direction, for reasons that will be-
come clear as we proceed. That is, we define a reduced distribution function
Wn(x) by

Wn(x) =

∫ 1

0
dy ρn(x, y). (9)

Using Eq. (8), we can easily obtain a difference equation for Wn(x), as

Wn(x) =
1

2

[

Wn−1(
x

2
) + Wn−1(

x + 1

2
)

]

. (10)

This equation is, among other things, the Frobenius-Perron equation for
the one-dimensional map, x′ = 2x (mod 1), on the interval (0, 1). What is
more important here, though, is that except for very special initial values
for W0(x), such as Dirac delta functions on the periodic points of the map,
Wn(x) approaches a constant, independent of x, as n → ∞. This may be
proved in a number of ways, but may be understood most simply by just
drawing some possible functional forms for W0(x) and follow what happens
to them after a few iterations of Eq. (10). A standard procedure is to make
a Fourier expansion of W0(x), and to notice that only the constant term
remains as the number of iterations gets large. The approach to equilibrium
in this simple system can be associated with the properties of the expanding
manifold in our simple two-dimensional phase-space. Because of the stretch-
ing of regions in phase-space in the unstable directions, functions defined on
the unstable manifold will get “smoothed out” in the course of time, much
the same way that a ball of dough gets smoother and smoother along the
direction that the baker stretches it. The initial wrinkles in the phase-space
distribution function will not get smoothed out along the stable direction,
on the contrary, they typically will get more and more wrinkled as the sys-
tem evolves. From these considerations we can see that the integration of
the phase-space distribution over the stable direction in Eq. (9) was not
chosen accidentally; had we integrated over x instead, we would not have
obtained an equation with a nice equilibrium solution as n → ∞. In fact, a
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Figure 3: The projection, W (x, n), onto the x-coordinate, of the phase-
space distribution function for the Arnold cat map.

typical initial distribution will become smooth in the expanding directions
but very striated in the contracting directions. However, eventually it will
look uniform on a coarse grained scale, consistent with the mixing behavior
of the baker’s map.

The connection between the approach to equilibrium and the expanding
direction of a measure preserving map can be further explored by consider-
ing the Arnold cat map. Here, the expanding direction is along a line that is
not aligned along either of the coordinate axes. One would expect that for
this model a projection of the phase-space distribution function along either
the x-axis, or the y-axis, would approach an equilibrium value. That this is
so can be seen from a simple computer calculation. We start with a phase-
space distribution that is concentrated in a small region 0 ≤ x, y ≤ 0.1. We
then follow the evolution in time of x and y projections of the distribution
function. In Figs. 3 and 4 we can easily see that these distribution approach
constant values after three or four iterations of the map, much before the en-
tire phase-space distribution is smooth, even on a reasonably coarse grained
scale, which for this arrangement takes eight to ten iterations. This obser-
vation may be generalized: reduced distribution functions on some lower
dimensional projection of phase-space will always become smooth under the
dynamics, unless the projected space is entirely spanned by stable directions
(hence is some subset of the stable manifold).
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Figure 4: The projection, G(y, n), onto the y-coordinate, of the phase-space
distribution function for the Arnold cat map.

Not only does one see an approach to an equilibrium distribution for the
projected distribution functions for these maps, one also sees that a suitably
defined Boltzmann H-function decreases monotonically as the number of
iterations increases. This is illustrated in Fig. 5 for the Arnold cat map, for
both projected distribution functions, starting from the same initial state
as described above. The figure shows the H-function for both projections,
as calculated on a computer. For the baker’s map, we can easily show the
monotonic decrease in the H function analytically. To do this we define the
H-function by

H(n) =

∫ 1

0
dxWn(x) ln Wn(x). (11)

If we now use the recursion relation for Wn(x), Eq. (10), we find that

H(n + 1) =

∫ 1

0
dxWn+1(x) ln Wn+1(x)

=

∫ 1

0
dx

1

2

[

Wn(
x

2
) + Wn(

x + 1

2
)

]

ln

{

1

2

[

[Wn(
x

2
) + Wn(

x + 1

2
)

]}

≤ 1

2

∫ 1

0
dx

[

Wn(
x

2
) ln Wn(

x

2
) + Wn(

x + 1

2
) ln Wn(

x + 1

2
)

]

= H(n). (12)

The inequality in Eq. (12) follows from the fact that f [(a + b)/2] ≤ [f(a) +
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Figure 5: The Boltzmann H-functions HW (n) and HG(n), obtained by
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f(b)]/2 if f(x) = x ln x. That is, a chord connecting two points on the curve
x ln x lies above the curve. Thus we see that the H function decreases with
time until Wn(x) becomes a constant.

We conclude this discussion with a few remarks. For the baker’s map
and the Arnold cat map, admittedly “toy” models, highly simplified ver-
sions of N particle systems, with almost trivial phase-spaces, we have been
able to derive irreversible equations and H-theorems with a minimum of
assumptions. We have associated the approach to equilibrium of projected
distribution functions with the existence of unstable manifolds for the dy-
namics in phase-space, and the fact that the projection is not orthogonal to
the unstable directions. In a more general context, such as a correspond-
ing, but not yet possible, dynamical derivation of the Boltzmann transport
equation, we would expect that the approach to equilibrium, seen here for
baker and Arnold cat maps, would correspond to the approach to a local
equilibrium state in the fluid. In such a local equilibrium state, the system
has equilibrium values for density, temperature, and local mean velocity over
distances of a few mean free paths. Then much slower hydrodynamic pro-
cesses with a different kind of dynamics govern the approach to an overall
equilibrium state for the entire fluid.3

3We wish to insert one word of caution about this picture. It seems clear from an
examination of diffusion in some non-chaotic systems, such as the famous wind-tree model,
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2.5 The Kolmogorov-Sinai entropy

We next turn to a brief discussion of an important quantity that character-
izes both deterministic chaos of the type we have been studying, as well as
Markov, stochastic processes. This quantity is called the Kolmogorov-Sinai
(KS) entropy. For a deterministic system it measures the rate at which in-
formation is gained about the initial state of a system. That is, suppose
that we know that the initial phase point of our system is in some small
region of Γ-space of dimension ε on a side, and that we cannot resolve the
location in Γ-space to any better precision. Consider now the evolution of
this small volume element in Γ-space. For a system with non-zero Lyapunov
exponents, this small volume will get exponentially stretched along the ex-
panding directions. After some time this stretching will make some sides
exponentially longer than the initial value ε, typically of length ε exp(λit),
where λi is one of the positive Lyapunov exponents. Since we can resolve
points in Γ-space to within a distance of ε in any direction, we can now
determine which of many small regions, of dimension ε on a side, our sys-
tem is in at time t. Then by inferring where this region came from in the
initial volume, we learn more about the initial location of the phase point.
Although it requires some careful analysis to prove, it is not difficult to
imagine that there is some direct relation between the positive Lyapunov
exponents and the KS entropy, hKS. In fact for a closed, hyperbolic system,
Pesin has proved that the relation is as direct as our discussion above would
imply, namely,

hKS =
∑

λi>0

λi. (13)

A deep and interesting fact is that at least one way to prove Pesin’s result
(which we will not do here) depends on the fact that hyperbolic systems can
be mapped onto Markov stochastic processes. That is, for such systems,
with baker and Arnold cat maps as simple examples, one can represent the
dynamics to within any arbitrary degree of precision, as a Markov process.
Such Markov processes have a measure of their own information entropy, a
quantity which measures the degree of uncertainty in the next outcome of
the stochastic process. One can show that the information entropy, suitably
defined, of the stochastic representation of a hyperbolic dynamical system
is equal to the KS entropy of the system. This is one of the deep results of
dynamical systems theory, which provides a firm mathematical basis for the
correspondence of hyperbolic dynamical systems with Markov processes. It
expresses the fact that from the point of view of mathematical analysis, at

that chaoticity is sufficient, but not always necessary for understanding the approach to
equilibrium of systems of many particles. However, in such non chaotic systems there
often is a non-dynamical source of randomness, as in the random locations of scatterers in
the wind tree model. This non-dynamical source of randomness is not needed to explain
the approach to equilibrium in chaotic systems.
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least, there is no real difference between a Newtonian, hyperbolic dynamical
system with a finite KS entropy, and a Markov stochastic process with equal
values of the information entropy. From the point of view of physics there is
a big difference, of course. The central idea of the physical approach we take
is to show that Newtonian dynamical systems are sufficiently hyperbolic to
behave as if they were Markov stochastic systems and in consequence all
important properties of Markov systems apply to dynamical systems, too.

An important first step is to show that some useful models of physical
systems have positive Lyapunov exponents and a finite, positive KS entropy
per particle. In the next sections we will show how methods of statistical
mechanics can be used to calculate Lyapunov exponents and KS entropies of
some simple many-particle systems—gases of hard spheres in d dimensions,
where d = 2, 3. Before doing so, however, we briefly turn our attention
to an application of the ideas of this section to non-equilibrium statistical
mechanics.

2.6 The escape-rate formalism for transport coefficients

We conclude this section with a discussion of a formal relation between
the transport coefficients that characterize hydrodynamic processes in fluid
systems, and the chaotic properties, such as Lyapunov exponents and KS
entropies that characterize the underlying dynamical behavior of the fluid.
The relation of interest here is called the “escape-rate” formula for transport
coefficients and is due to Gaspard, Nicolis, and co-workers[6, 7]. It applies
to those fluids which can be considered to be classical, transitive, hyperbolic
dynamical systems. While we do not know with certainty if any models of
fluid systems satisfy this hyperbolicity requirement, we can suppose, as a
working hypothesis, that generic fluid systems are well described as tran-
sitive hyperbolic systems, and then explore the consequences that result.
This hypothesis has been assumed by almost all workers in this field, but
its most satisfactory articulation was provided by Cohen and Gallavotti in
their study of non-equilibrium fluctuations in thermostatted systems[8]4.

To illustrate the escape-rate formula, we consider only the case of particle
diffusion in an array of fixed scatterers, and refer to the literature for more
general cases[7, 9]. We suppose that a collection of particles is moving in a
region R in space, and that there is also a collection of fixed scatterers placed
in R, as illustrated in Fig. (6). We suppose that the size of R is characterized
by a length L which is much larger than the typical mean free path of the
particles moving in R. For simplicity we suppose that the moving particles

4It is customary to use the term Anosov system to describe a transitive hyperbolic
system without singularities, such as the Arnold cat map. The class of Anosov systems
does not include baker maps or hard sphere systems, since discontinuities of the map or
flow, present in these systems, are not allowed by the Anosov condition. For this reason
we prefer to generalize the chaotic hypothesis to include transitive, hyperbolic systems.
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x=0 x=L

Figure 6: A slab geometry for diffusion in a system of moving particles is
an array of fixed scatterers, with absorbing boundaries.

do not interact with each other but only with the scatterers, and that the
scatterers do not “trap” the moving particles in regions of microscopic or
macroscopic size. In order to provide a non-equilibrium situation which
would exhibit the diffusive properties of this arrangement, we suppose that
R is surrounded by absorbing boundaries such that if a particle crosses the
boundary of R from the interior, it is absorbed and lost to the system.

Under most circumstances 5, the classical, macroscopic dynamics of this
process is described by the diffusion equation

∂n(~r, t)

∂t
= D∇2n(~r, t), (14)

where n(~r, t) is the density of moving particles at time t at point ~r, and D
is the coefficient of diffusion of the moving particles for this system. The
absorbing boundary conditions require that n(~r, t) = 0 on the boundaries.
While the exact solution of Eq. (14) depends on the geometry of the system,
one can easily see that for long times, the total number of particles in the
system decays with time as

N(t) =

∫

R
d~rn(~r, t) ≃ N(t = 0) exp[−DAt/L2], (15)

where A is a factor of order unity that depends on the geometry of the
region R, D is the diffusion coefficient, and L is the characteristic size of
R. We see that this macroscopic process is characterized by an exponential
escape of particles from R, with an escape-rate, γmac = DA/L2. There is a
corresponding microscopic description of the escape process based upon the

5I.e., the surface area to volume of R scales to zero as L → ∞.
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properties of the trajectories of the particles moving in the array of scatter-
ers. There is a set of initial points in the phase space for the moving particles
which are associated with trajectories that never leave the system for either
the forward or time reversed motion. This set of points is called a repeller

and denoted by R, and it is invariant, in the sense that any time-translation
of this set of points is the set R itself. Further, the repeller usually forms
a fractal set in phase space with zero Lebesgue measure. Simple examples
of repellers can be found in most books on chaos theory[1, 3]. It is possible
to consider the dynamical properties of the trajectories on the repeller, and
to define the Lyapunov exponents, λi(R), and the KS entropy, hKS(R), of
such trajectories[9, 10, 11]. For transitive hyperbolic systems, one finds that
the sum of the positive Lyapunov exponents on the repeller is not equal to
the KS entropy as would be the case for closed systems according to Pesin’s
theorem, but that the two quantities differ by an amount equal to the rate
at which the other trajectories escape from the system, which we denote by
γmic. That is

γmic =
∑

λi>0

λi(R) − hKS(R). (16)

Now we make the reasonable conjecture that the microscopic and the macro-
scopic escape-rates are equal, which leads to an expression for the diffusion
coefficient D given by

D = lim
L→∞

L2

A





∑

λi>0

λi(R) − hKS(R)



 , (17)

where we have taken the large system limit in order to remove terms of
higher order in 1/L resulting from deviations of the actual dynamics from the
diffusion law. In the event that the limit on the right hand side of Eq. (17)
exists, one has an expression for a macroscopic transport coefficient in terms
of microscopic dynamical quantities. The escape-rate formalism has been
applied by Gaspard and Baras[12] to determine the diffusion coefficient of a
particle moving in a dense array of hard disk scatterers, where the centers
of the scatterers are placed at the vertices of a triangular lattice, and by van
Beijeren, Dorfman, and Latz, to determine the KS entropy on the repeller
of a dilute, random Lorentz gas with hard disk or hard sphere scatterers[13].

3 Largest Lyapunov exponent of a gas of hard

spheres at low density

3.1 The hard sphere gas

Often the calculation of chaotic characteristics of a system can only be done
numerically. It would be preferable if one could at least find approximate
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values for such quantities using more analytical methods, and thus gain
some insight into the relevant physical processes. For the Lorentz Gas at
low densities, this was done by Dorfman, Van Beijeren and others [15, 13,
16, 17]. Here we present a calculation of the largest Lyapunov exponent for
a system that is closer to a real gas, namely a dilute hard sphere gas. A
brief presentation of this calculation can be found in Ref. [18].

We take N hard spheres in a volume V , in d dimensions. The diameter
of the hard spheres is σ, the reduced density is defined as the dimensionless
number ñ = Nσd/V . We work in the thermodynamic limit N,V → ∞,
keeping ñ fixed (but small). In this limit we need not be concerned with
boundary conditions, but one may think of periodic boundary conditions,
which have been used in Molecular Dynamics simulations to which we will
eventually compare our results.

The phase-space of the hard sphere gas consists of the positions {~ri} and
velocities {~vi} of all N particles. To calculate the largest Lyapunov expo-
nent, denoted here by λ+, we need to consider two infinitesimally close
trajectories in phase-space, Γ = (~r1, ~v1, . . . , ~rN , ~vN ) and Γ + δΓ = Γ +
(δ~r1, δ~v1, . . . , δ~rN , δ~vN ). The dynamics of the δ~ri and δ~vi is found from
linearizing the dynamics of ~ri and ~vi, which consists of a sequence of free
flights and binary collisions. In free flight, there are continuous changes,

~̇ri = ~vi

~̇vi = 0
˙δ~ri = δ~vi

˙δ~vi = 0, (18)

and at collisions the values of the two particles i and j change discontinuously
according to:

~r ′
j = ~rj

~v ′
j = ~vj + (~vij · σ̂)σ̂

δ~r ′
j = δ~rj + (δ~rij · σ̂)σ̂

δ~v ′
j = δ~vj + (δ~vij · σ̂)σ̂ + Q(δ~ri − δ~rj). (19)

Primes are used to denote values right after the collision. ~vij = ~vi − ~vj is
the relative velocity and σ̂ = (~ri −~rj)/σ is the collision parameter. Q is the
matrix[18]

Q =
[(σ̂ · ~vij)1 + σ̂~vij ] · [(σ̂ · ~vij)1− ~vij σ̂]

σ(σ̂ · ~vij)
. (20)

The non-dotted products of vectors are dyadic products and 1 is the identity
matrix.

Our approach will be based on kinetic theory. We are concerned with
the distribution of (~r,~v, δ~r, δ~v) as a function of time. For low densities, the
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evolution of the distribution function f is described by a kinetic equation[19].
This equation is based on the assumption that two colliding particles are
uncorrelated, so that the probability of a collision between a particle with
(~r1, ~v1, δ~r1, δ~v1) and one with (~r2, ~v2, δ~r2, δ~v2) is proportional to the product
f(~r1, ~v1, δ~r1, δ~v1) f(~r2, ~v2, δ~r2, δ~v2).

6

The kinetic equation can, unlike the ordinary Boltzmann equation, be
expanded in powers of 1/| ln ñ| to get the low density behavior of f , and
thus of λ+. We will take a different but roughly equivalent approach, we
will derive the effective dynamics of the δ~ri and δ~vi for low densities, and
use that to write down a kinetic equation.

3.2 Low density dynamics – Clock model

The main characteristics of the low density region is the typically long free
flight time τ of an individual particle between collisions, compared to the
time it would take two transparent hard spheres to cross each other. If v0 is
the typical thermal velocity, the latter is σ/v0, while τ ≈ 1/(v0σ

d−1N/V ) =
σ/(v0ñ). Thus ñ is the small parameter.

Just before a collision at time t the δ~ri(t) will be

δ~ri(t) = δ~ri(t0) + δ~vi(t0)τi , (21)

if t0 is the time of the previous collision and τi is the (large) free flight time
t− t0. Suppose that initially δ~ri(t0)/σ and δ~vi(t0)/v0 are of the same order,
then just before collision,

δ~ri = τi [δ~vi + O(ñ)] .

We insert this into the collision rules and neglect the terms of relative order
O(ñ):

δ~r ′
j ≈ τjδ~vj + {(τiδ~vi − τjδ~vj) · σ̂}σ̂

δ~v ′
j ≈ Q(τiδ~vi − τjδ~vj). (22)

Using Eq. (20), we see that δ~r ′
i /σ and δ~v ′

i /v0 are both of order (δ~vi −
δ~vj)/v0ñ, and are of the order of the ratio of the mean free time to the
time it takes to traverse a particle diameter. For a dilute gas, this ratio is
large and terms of relative order ñ can be neglected. In this way we have
eliminated the δ~ri from the δ~vi dynamics.

The neglected terms were of relative order ñ, relative to either τiδ~vi or
τjδ~vj . These two are not necesarily of the same order. Now, if one of them
is one or more orders of ñ higher than the other, we should also neglect it.
If they are both of the same order, we should keep both. To know which

6Of course one also has to demand that the particles should be a distance σ apart.
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terms to neglect, we have to keep track of the orders of ñ in δ~vi. For that
purpose, we define

δ~vi = v0(ñ)−ki êi, (23)

where ‖êi‖ = 1. The number ki counts the number of orders of ñ and we
will call this the clock value of particle i. The clock values are real numbers
at this point, but later will be approximated by integers. Inserting Eq. (23)
into Eq. (22), we can get the clock values k′

i and k′
j after collision. Since, to

leading order in density, δ~v ′
i and δ~v ′

j differ only in sign, k′
i = k′

j = k′, with

k′ =
1

− ln ñ
ln ‖Q(τiδ~vi − τjδ~vj)‖.

Both τi and τj are typically of order σ/(v0ñ). This means that if ki > kj,
we should neglect the term with δ~vj , and if ki < kj , we should neglect the
other term. This yields:

k′ = kD +
1

− ln ñ
ln ‖QτDêD‖,

where D = i if ki > kj , and D = j otherwise. Particle D is called the
dominant particle. Using the property τD = O(σ/(v0ñ)) and the explicit
form of Q from Eq. (20), one gets

k′ = kD + 1 + O(
1

ln ñ
).

So far we have ignored the possibility that ki = kj. But the resulting
correction in fact only contributes to the O(1/ ln ñ) part.

Differences in the number of collisions suffered by different particles,
cause the clock values to not be all the same, even if they were so initially.
They are indispensible for determining the magnitudes of postcollisional
velocity deviations. But in fact no more is needed! For if we know how
fast the clock values grow, we know the linear growth of ln ‖δ~v‖, which is
precisely the largest Lyapunov exponent. So we define the clock speed as

w = lim
t→∞

< k(t) >

ν̄t
,

in which < k > is the average clock value and ν̄ is the average collision
frequency.7 Because we extracted ν̄, which is O(ñ), this clock speed is of
order 1.

The Lyapunov exponent is related to w via

λ+ = −wν̄ ln ñ.

7In a hard sphere gas in d dimensions, ν̄ = 2π

d−1

2

Γ( d

2
)

√

kBT

mσ2
ñ.
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The clock speed w will be calculated in an expansion in 1/| ln ñ|. The leading
order for low density, calculated in the next section, is a non-trivial constant.
This behavior of λ+ as a function of density had been conjectured already
by Krylov[20], however without a nontrivial prefactor w. A first estimate of
w was made by Stoddard and Ford[21], who got w = lnN . This would mean
that there is no thermodynamic limit for the Lyapunov exponent. Some nu-
merical simulations[22] have been interpreted as supporting the logarithmic
divergence with N , but with a prefactor much smaller than 1. However, we
will find a finite thermodynamic limit for w and show that, even in a mean-
field approach that fully ignores local density fluctuations, it approaches this
thermodynamic value so slowly that in the range of particle numbers acces-
sible to simulations one could not distiguish between saturation or slow but
steady increase.

3.3 Kinetic approach

For low densities, we may describe the effective dynamics of the clock values
by

k′
i = k′

j = max(ki, kj) + 1, (24)

where the collision pairs (i, j) are chosen completely randomly with Poisson
distributed collision times. The model with this dynamics we will call the
clock model. For simplicity we will consider integer clock values only, though
this restriction is by no means necessary or important. The clock speed w
found in this model gives the leading term in the density expansion of the
Lyapunov exponent:

λ+ = wν̄ [− ln ñ + O(1)] . (25)

A distribution function fk(t) will denote the fraction of particles having
clock value k at time t. From the dynamics specified above we can derive an
equation for the distribution function fk(t) of clock values. We expect the
clock values to grow linearly with time. If they all grow at the same rate,
we have

fk(t) = g(k − wν̄t),

with w as defined before, because

lim
t→∞

1

ν̄t

∞
∑

k=−∞

g(k − wν̄t)k = lim
t→∞

1

ν̄t

∞
∑

x=−∞

g(x)(x + wν̄t) = w.

So once we have a kinetic equation for fk(t), we will look for these propa-

gating solutions.
Consider the contributions to ∂fk

∂t from collisions in which a clock value
k is lost. In each collision where a particle with k enters, the k gets lost,
so the fraction of particles with k decreases at a rate ν̄fk(t) due to these
processes. There are also processes which increase the fraction of particles
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having k. For these the larger incoming clock value should be k − 1. We
have to distiguish collisions with equal incoming clock values, both k − 1,
from ones with different incoming clock values k − 1 and l. The rate for the
latter type of collisions is ν̄fk−1

∑k−2
l=−∞ fl. For the former ones the rate is

only 1/2 ν̄f2
k−1, because the two particles are drawn from the same fraction

fk−1, and it doesn’t matter in which order they are picked. In either case
the number of particles with clock value k increases by two, so we get the
kinetic equation:

∂fk(t)

∂ν̄t
= −fk(t) + f2

k−1 + 2fk−1

k−2
∑

l=−∞

fl.

We scale out ν̄ by defining a new time variable τ = ν̄t. The equation is
simplified further by replacing the fraction fk of particles having clock value
k, by the fraction Ck of particles that have clock values k or less:

Ck(τ) =
k
∑

l=−∞

fl(τ).

The kinetic equation then takes the short form:

∂Ck

∂τ
= −Ck + C2

k−1. (26)

3.4 Front propagation

Let us investigate the solutions of Eq. (26). We see that, given Ck−1 and
the initial value of Ck, we can solve for Ck:

Ck(τ) = e−τ
[

Ck(0) +

∫ τ

0
eτ ′

C2
k−1(τ

′)dτ ′

]

.

If Ck = 0 initially, it will remain zero, because 0 ≤ Ck−1 ≤ Ck. We take
initial conditions such that Ck<1(0) = 0 and Ck>0 = 1, i.e. all particles have
k = 1. The solutions Ck are all polynomials in exp(−τ), but with increasing
k the order grows exponentially. Nonetheless, we calculated the Ck up to
k = 32 using a computer program to handle the analytic manipulations.
The Ck’s are plotted in Fig. 7 for τ = 0, 2, 4, 6 and 10.

We see in Fig. 7 that the initial distribution changes to some smoother
shape, and moves to the right. After a while the shape seems to stay con-
stant. We can now view Eq. (26) as describing a propagating front: C ≡ 0
is a stable phase and C ≡ 1 is an unstable phase. On the left we have the
stable phase, on the right, the unstable phase and in between is the interme-
diate region called the front , that propagates to the right, into the unstable
phase. The velocity at which it moves to the right is w. From Fig. 7 we see
that for τ = 10, the speed is still increasing, and is about 3.8.
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Figure 7: Time evolution of the clock value distribution. All initial clock
values are 0.

Front propagation into an unstable phase comes in two flavors[23]. In
general, the instability of the unstable phase sets a velocity w∗ by which
small perturbations propagate to the right. This velocity w∗ is determined
from the linearized equation describing the front propagation around the
unstable phase. For pulled fronts w∗ is the asymptotic velocity of any solu-
tion with an initial shape that is sufficiently steep. If, however, no solution
of the full non-linear front equation with this velocity exists, or if it is un-
stable with respect to some nonlinear perturbation, the velocity is set by
these non-linearities and the front is called pushed. In that case the velocity
is higher than w∗. We will assume that in our case the front is pulled. As
we do not know of a general criterion for deciding whether a front is pushed
or pulled, we will use the results of computer simulations for the validation
of our assumption.

We want to find a solution to Eq. (26) of the form

Ck(τ) = F (k − wτ) = F (x).
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which means

− w
dF (x)

dx
= −F (x) + F 2(x − 1). (27)

Now C is a positive, increasing function of k, bounded between 0 and 1.
The function F should have all these properties too. So we are looking for
a solution of a form such as depicted in Fig. 8.

0

1

x

F(x)

Figure 8: Clock value distribution as a propagating front

For a pulled front, we have to investigate the Eq. (27) linearized around
the unstable phase. Writing F = 1 − ∆, we get

− w
d∆(x)

dx
= −∆(x) + 2∆(x − 1) + O(∆2). (28)

Given w, the asymptotic solution of Eq. (28) is given by a sum of exponentials[24]

∆(x) =
∑

i

Aie
−γix. (29)

The possible values of γi are found by inserting exp(−γx) into the linearized
equation (in case of degeneracies, Ai should be replaced by a polynomial in
x). This gives w as a function of γ:

w(γ) = (2eγ − 1)/γ. (30)

The γi may be complex, and, for given w, there are infinitely many of them.
However, we know that ∆ should be monotonic, so the most slowly decaying
term in the sum should have a real positive γ.

From the plot of Eq. (30) in Fig. 9, we see that there are three cases:
If w is larger than some critical w∗, there are two γ’s, which are real and
positive. If w = w∗ these two become degenerate and for w < w∗ they
become complex. But for the slowest term to have complex γ was not
allowed by the condition of monotonicity of F : asymptotically the function
would oscillate. So we conclude that, for the the Ansatz of a propagating
front to work, the velocity should be at least w∗, the minimal w from Eq. (30)
for positive real γ. This value can be expressed in terms of Lambert’s W
function:8

w∗ =
−1

W (−1
2e )

≈ 4.31107 . . . ,

8Defined as W (x) exp[W (x)] = x, where the branch analytic in 0 is meant.
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Figure 9: Velocity versus asymptotic decay rate γ.

and it is the velocity set by the instability that we mentioned before. So it
is the velocity w we were after. Its value is compatible with the estimate
3.8 from Fig. 7 (a lower value than 3.8 would not), which supports the
assumption of a pulled front. This concludes the calculation of the leading
order in Eq. (25) of the largest Lyapunov exponent in the infinite system
limit within the framework of our clock model, but we still have to consider
the effects of a finite number of particles.

3.5 Large finite N effects

The kinetic equation works well in the thermodynamic limit, but to compare
our results with simulations we need to correct for the effects of the finiteness
of the number of particles. The clock model is very suitable for simple
simulations. We take a set of N integer numbers {ki}. In each time step
two of them are picked at random, and the collision rule in Eq. (24) is applied
to them. We do this T times. The average number of collisions per particle
is then 2T/N , because in each of the T collisions two particles are involved.
An estimate for the clock speed is the average clock value

∑

i ki/N divided
by the average number of collisions per particle. For large T this approaches
the clock speed wN , so

wN = lim
T→∞

1

2T

N
∑

i=1

ki.

This simulation is not even a bad chacterization of what happens with the
clock values in the hard sphere gas, because at low densities there is very
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little correlation between pairs of particles involved in subsequent collisions.
It is very similar to the variant of the Direct Simulation Monte Carlo method
used by Dellago and Posch[25] for the calculation of Lyapunov exponents in
a “spatially homogeneous system”.

Clock speeds for different numbers of particles are plotted in Fig. 11.
Each point is determined from a single run with 2000 collisions per particle.
The sums of all clock values at 20 times were fitted to a linear function.
The slope gave wN , the error in the slope gave the error in wN . The errors
are always less than 0.5 percent. One sees that wN increases slowly with
increasing N . It is possible that it saturates at the value of 4.311, but this
cannot yet be seen even for half a million particles.

A natural thought is that the N dependence of w is due to correlations
between subsequent collisions: if two particles collide that already collided
just before, or that had their clock values reset shortly before by parti-
cles that were roughly synchronized already, the gain in clock value of the
”slower” particle will be less than average. Hence the average clock speed
is reduced. However, as we will see, the reduction in clock speed can be
explained entirely on the basis of the linearized equation plus some simple
bounds on its region of validity and this explanation does not seem to require
any effects of correlated collisions.

In the head of the distribution, the finiteness of the number of parti-
cles becomes important when fk = O(1/N). For this reason, Brunet and
Derrida[26] treat the finite N effects by the introduction of a cutoff ε = 1/N
in the equation, i.e. they modify the equation as soon as fk < ε. They
distinguish three regions: one where the non-linear behavior is dominant,
one where the linear equation holds, and one where the cutoff is effective.
By glueing the solutions in these regions together, one obtains a new ε-
dependent front velocity.

The introduction of a cutoff in something that is supposed to be a distri-
bution function, which is an average over realizations, seems hard to justify.
A more satisfactory way to obtain it, is to shift all clockvalues in each re-
alization such that the particle with the largest clock value has x = 0, and
then average the distribution function (this was also suggested by Kessler
et al[27]). Then the cutoff occurs naturally.

For x < 0 there is a region where we can use the linearized equation. We
consider the leading term in Eq. (29):

∆ ∼ c

N
e−γ0x.

The prefactor c/N is obtained from the fact that ∆ = O(1/N) at x = 0
(c is order 1). The linear regime ends when ∆ becomes of order 1, so for
x = − ln(N

c )/γ0. This is illustrated in Fig. 10.
In contrast with the infinite system, now we only have to demand mono-

tonicity and positivity from the solution of the linearized equation in this in-
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Figure 10: The cutoff at the head of the distribution and the linear regime.

terval of width ln(N
c )/γ0. This means that a small imaginary value is allowed

for the γ in Eq. (29) with the smallest real part. We denote γ = γR + iγI .
The consequential oscillations,

∆ = a0 e−γRx cos(γIx + φ),

should not cause sign changes in the function or its derivative. The derivative
can be sign definite if at most half a wavelength fits in the interval, i.e. if at
most

γI =
γRπ

ln(N/c)
.

For the leading behavior c can be set to 1. Positivity of ∆ itself also poses
an additional bound on γI , but this can be shown to be a higher order effect.

We expand w(γ) around its minimum at γ0:

w(γ) = w(γ0 + δγ) ≈ w(γ0) +
1

2
w′′δγ2 +

1

6
w′′′δγ3 + h.o.(higher orders),

where w′′ = d2w
dγ2 (γ0) and w′′′ = d3w

dγ3 (γ0). w is still real, so the imaginary
part gives

0 = δγI

{

w′′δγR +
1

6
w′′′[3δγ2

R − δγ2
I ] + h.o.

}

,

where δγ = δγR + iδγI . To first order this says that w′′δγR = 1
6w′′′δγ2

I : the
shift in the real part of γ is higher order compared to the imaginary part.
The new velocity is written as w = w0 + δw, and δw is obtained from the
real part of equation Eq. (30) expanded to first order:

δw =
1

2
w′′
{

δγ2
R − δγ2

I

}

+
1

6
w′′′

{

δγ3
R − δγRδγ2

I

}

+ h.o.

= −1

2
w′′δγ2

I + h.o. = − w′′π2γ2
0

2 ln2(N/c)
+ h.o., (31)

which coincides with Brunet and Derrida’s result (when c is set to 1). They
however needed to consider how the linear region connects to the others,
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Figure 11: Effect of finite N on the clock speed. Diamonds are the simula-
tions; the solid line is the prediction Eq. (32); the dashed line is the asymp-
totic value 4.311 . . .. The inset shows the linear behavior of 1/

√
w0 − wN

(plotted with error bars) as a function of lnN . The solid line in both is the
fit to the form in Eq. (33).

while we only need that ∆ is of order 1 at the border with the non-linear
region. From Eq. (30), one can show that w′′γ2

0 = (w0 − 1), so we find the
result

wN = w0 −
(w0 − 1)π2

2 ln2(N/c)
. (32)

In Fig. 11 the simulation results are plotted together with a fit. We cal-
culate δw−1/2 = 1/

√
w0 − wN , with wN taken from the simulations, which

should be a linear function of lnN for large N :

δw−1/2 N→∞−→ a + b ln N. (33)

Indeed this behavior is seen in the inset of Fig. 11. According to Eq. (32),
a = − ln c and b = π−1

√

2/(w0 − 1) = 0.247 . . .. The fit to the data9

shown in the inset yields b = 0.23 ± 0.01, consistent with the theoretical
prediction10, and a = −0.07 ± 0.07. The value of c corresponding to this a

9As the prediction is for large N , only points for N > 256 are used in the fit.
10By allowing changes in a and b simultaneously, one finds an appreciably larger range

of acceptable values for b than the error in b indicates.
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is c ≈ 1.07, so it is of order 1 as expected.
The values from our simulations have been compared in Ref. [18] to

molecular dynamics simulations of hard spheres, from which w is found
from a fit of λ+ to the form Eq. (25). The values agreed very well with the
simulations.

3.6 Further refinements

Comparing the results from high precision simulations of the clock model
on the one hand and of hard disk systems with exactly the same number
of particles and equal collision frequency on the other hand, one finds that
the dimensionless clock speed w in the latter is significantly higher than in
the former; for a system of 10, 000 particles the clock model gives a w of
4.05 ± 0.01, whereas the corresponding hard disk value is 4.47 ± 0.02. The
cause of this difference is the velocity dependence of the collision frequency,
which is an increasing function of speed. As a result particles in the head
of the distribution tend to have a higher speed than average (a higher col-
lision frequency enhances the clock value), resulting in a clock speed that
is systematically higher than it would be in the case of a velocity indepen-
dent collision frequency. The clock model does have a velocity independent
collision frequency indeed, which explains the difference in w between this
model and the hard disk system.

An explicit calculation accounting for these effects and producing im-
proved estimates for w in hard disk systems will appear soon[28].

4 Kolmogorov-Sinai entropy of a gas of hard spheres

at low density

In the previous section we reviewed the calculation by Van Zon and Van
Beijeren of the largest Lyapunov exponent for a gas of hard disks at low
densities. Here we will outline a related, but somewhat simpler calculation of
the KS entropy of a gas of hard disks or of hard spheres at low density. This
calculation, while not rigorous in a mathematical sense, is a strong indication
of the chaotic behavior of such gases, and indicates that the chaoticity of a
dilute hard disk or hard sphere gas persists in the thermodynamic limit.

The starting point is the same as in the previous section. It is important
to note that the dynamics of a hard sphere system is exactly described as
free motion of the particles, punctuated by instantaneous, binary collisions
between some pair of particles. To describe this motion and the quantities we
need for the KS-entropy, we consider the dynamical behavior of the positions
and coordinates of all the particles in the gas, (~r1, ~v1, ~r2, ~v2, . . . , ~rN , ~vN ), as
well as a set of deviation vectors which describe the motion of a pencil of
nearby trajectories in phase-space, (δ~r1, δ~v1, . . . , δ~rN , δ~vN ). The equations
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of motion for these quantities between the binary collisions are given by
Eq. (18) and the changes of these quantities at a collision between particles
i and j are given in Eqs. (19,20).

To proceed with the calculation of the KS-entropy, we will suppose that
the Pesin formula holds, i.e., that the KS-entropy is the sum of the positive
Lyapunov exponents. This sum can be obtained by considering the growth
in time of the volume of the dN -dimensional projection of an arbitrary,
infinitesimal volume in the full 2dN -dimensional phase space. This observa-
tion requires some explanation, as follows. The typical rate of separation of
two arbitrary, but infinitesimally close, points in phase-space, for a hyper-
bolic system, will be exponential and the rate will be given by the largest
Lyapunov exponent. If we consider a typical two-dimensional, infinitesimal
area in phase-space, then this area will grow exponentially with a rate deter-
mined by the sum of the two largest Lyapunov exponents. In other words,
the exponential growth of a typical infinitesimal n-dimensional subvolume
in phase space is determined by the sum of the n largest Lyapunov expo-
nents. Further, for a Hamiltonian system, the Lyapunov exponents come in
plus-minus conjugate pairs, so that the sum of a conjugate pair of exponents
is always zero. Consequently, the growth of an infinitesimal dN -dimensional
subvolume is determined by the sum of the dN non-negative Lyapunov expo-
nents, and the volume of an infinitesimal 2dN -dimensional volume remains
constant, in accord with Liouville’s theorem.

For the typical dN dimensional subvolume, we consider a volume formed
by the projection of 2dN infinitesimal displacement vectors on velocity
space, (δ~v1, δ~v2, . . . , δ~vN ). Given initial values for each of these vectors,
as well as for all of the positions, ~ri, velocities, ~vi, and position deviation
vectors, δ~ri, we can follow their evolution in time and, in principle at least,
determine the time dependence of an infinitesmal volume element in velocity
space, which we denote as δV(t). Then

hKS =
∑

λi≥0

λi = lim
t→∞

1

t
ln

δV(t)

δV(0)

= lim
t→∞

1

t

∫ t

0
dτ

d ln δV(τ)

dτ

=

〈

d ln δV(t)

dt

〉

. (34)

The last line of Eq. (34) is based on the assumption (still unproven) that
a gas of hard spheres is ergodic, so that time averages can be replaced
by equilibrium averages taken with respect to a microcanonical ensemble.
Here this average is denoted by angular brackets. Since we are considering
a volume element in velocity space, we can use the fact that the velocity
displacement vectors do not change during the free flight motion of the
particles between the collisions, but do change at a collision. Under these
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circumstances, one can use elementary kinetic theory considerations to show
that the final term on the right hand side of Eq. (34) is

〈

d ln δV(t)

dt

〉

=

〈

∑

i<j

Ti,j ln δV
〉

=
N(N − 1)

2
〈T12 ln δV〉 . (35)

Here T12 is a binary collision operator, discussed in some detail in Refs. [29,
30], given by

T12 = σd−1
∫

~v12·σ̂<0
dσ̂|~v12 · σ̂|δ(~r12 − σσ̂)[Pσ̂(1, 2) − 1]. (36)

In Eq. (36), d is the number of spatial dimensions of the system, σ again is
the diameter of the spheres, ~r12 = ~r1 − ~r2;~v12 = ~v1 − ~v2, and the operator
Pσ̂(1, 2) is a substitution operator which replaces the precollision values,
~r1, ~v1, ~r2, ~v2, δ~r1, δ~v1, δ~r2, δ~v2, by their post collision values, denoted with
primes, given by Eqs. (19,20). The unit vector σ̂ is an impact parameter,
running in the direction of the line connecting the centers at collision and
is integrated over a hemisphere corresponding to all allowed directions.

At this point it is useful to express the precollision quantities δ~ri as

δ~ri = δ~ri(0) + τiδ~vi, (37)

where δ~ri(0) is the position displacement of particle i just after its previous
collision, and τi is the time between the previous collision of particle i with
some other particle, and the next collision involving particle i. To further
simplify the expression for the KS-entropy, we now neglect, as in section 3,
the initial displacement vectors, δ~ri(0), when we calculate the change of the
infinitesimal volume in velocity space at the (1, 2) collision in Eq. (35). This
turns out to be a serious approximation. It leads to the correct value for the
leading density term in hKS , at low density, but the first order correction
to this term is obtained incorrectly in this approximation. This can be
repaired, but at the cost of a much longer and intricate calculation which
we will present elsewhere.

If we insert δ~r1 = τ1δ~v1 and δ~r2 = τ2δ~v2 into the expression, Eq. (19),
for the post collision velocity deviations for particles 1 and 2, we find that

[Pσ̂(1, 2) − 1] ln δV = ln
δV ′

δV = ln |detM12|, (38)

where

M12 = 1− 2σ̂σ̂ − 2T12

σ

[

(~v12 · σ̂)1 − ~v12σ̂ + σ̂~v12 −
~v2

12

(~v12 · σ̂)
σ̂σ̂

]

. (39)

In Eq. (39), T12 = (τ1 + τ2)/2 and 1 is the unit matrix. The determinants
are easily evaluated. For d = 2, one finds

|detM12| = 1 +
2T12|~v12|
σ cos φ

, (40)
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where φ is the angle of incidence in the 1, 2 collision and ranges over the
values −π/2 ≤ φ ≤ π/2. A similar calculation for d = 3 shows that

|detM12| = 1 +
2T12|~v12|
σ cos φ

(cos2 φ + 1) +

(

2T12|~v12|
σ

)2

. (41)

To obtain the leading term in the density, for low density gases, we keep the
highest power of the time in each of the expressions for the determinant.
Further, at low densities we can compute the ensemble averages appearing
in Eq. (34) by ignoring possible pre-collision correlations between particles
1 and 2, and using equilibrium values for the single-particle distribution
functions appearing in the ensemble averages. In this way we find for d = 2

hKS/N =
a

2n

∫

d~v1

∫

d~v2

∫

dτ1

∫

dτ2

∫

~v12·σ̂<0
dσ̂|~v12 · σ̂| ×

×F1(~v1, τ1)F1(~v2, τ2) ln T12 + · · · , (42)

where the normalized equilibrium single particle distribution functions, F1(~vi, τi)
are given, in d dimensions, by

F1(~vi, τi) = n(
βm

2π
)d/2ν(~vi)e

−βm~v2
i
/2e−ν(~vi)τi . (43)

Here n is the number density of the gas, β = (kBT )−1, where T is the
gas temperature, and kB is Boltzmann’s constant, ν(~vi) is the equilibrium
collision frequency for a particle with velocity ~vi. For two dimensions, the
evaluation of the integrals leads directly to

hKS/N =
ν

2
[− ln(nσ2) + · · ·] (44)

where ν = [(2π1/2nσ)/(βm)1/2] is the average collision frequency at equi-
librium for a two-dimensional gas of hard disks. The terms left out are of
higher order in the density.

For three-dimensional gases, a parallel calculation leads to

hKS/N = ν[− ln(πnσ3) + · · ·], (45)

where for a gas of hard spheres (d = 3) the average collision frequency ν =
[(4π1/2nσ2)/(βm)1/2]. These results are in excellent agreement with the nu-
merical simulations of Dellago and Posch[25]. The higher order terms take,
as mentioned earlier, considerably more work, and are discussed elsewhere[31].

5 Conclusions and Outlook

In the previous sections we have reviewed some of the ideas that motivate
the interest in the chaotic foundations of non-equilibrium processes in fluids.
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We have provided an elementary discussion of transitive, hyperbolic dynam-
ical systems such as the baker and the Arnold cat maps to illustrate some
of the central notions and dynamical quantities. We then turned to the ap-
plications of kinetic theory to compute the largest Lyapunov exponent and
the KS entropy for a dilute gas of hard disks or hard spheres. The explicit
results obtained by these methods are in good agreement with the results of
computer simulations, and, apart from the corrections due to the velocity
dependence of the collision frequency referred to at the end of section 3,
represent the present state of the art in the analytical calculation of chaotic
quantities for dilute gases with short range, repulsive forces. There are,
however, still many open problems which need solving. Here we mention a
few of them:

1. We have a theory for the leading density behavior of the largest Lya-
punov exponent for a dilute gas of disks or spheres. We also have some
understanding of the number dependence of this quantity when we are
not quite in the thermodynamic limit. However we do not know much
about the higher density corrections to this exponent, nor do we know
anything about the rest of the Lyapunov spectrum, other than the KS
entropy per particle (in the thermodynamic limit). The determination
of the complete spectrum would be quite an accomplishment.

2. Recent results of Rom-Kedar and Turaev[32] imply that systems with
short range repulsive forces, other than hard disks or spheres, may not
be totally hyperbolic. Instead their phase spaces may have elliptic is-
lands where the motion is not chaotic. It would be interesting to know
first of all if there are any experimental or theoretical consequences of
the existence of these elliptic regions for non equilibrium processes in
real fluid systems and also whether such elliptic islands will persist for
arbitrarily large energies.

3. One important application of the methods described here is to the de-
termination of the chaotic properties of thermostatted, driven systems
for which a non-equilibrium steady state is reached and maintained.
The general properties of such systems are described in the books of
Hoover[33] and of Evans and Morriss[34], and a clear mathematical
description has recently been given by Ruelle[35]. Of special interest
is the perturbation of the Lyapunov spectrum produced by the ther-
mostatted driving field. For dilute, random Lorentz gases it has been
possible to use kinetic theory methods to determine the spectrum when
the field is small[16]. It would be worthwhile to extend these results
to larger fields and to gases where all of the particles are moving.

4. The escape-rate formalism described here has two drawbacks: (a) It
is not at all easy to describe the fractal repeller that forms in the
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phase-space of a system with many degrees of freedom. (b) Even in
those cases where the sum of the positive Lyapunov exponents on
the repeller can be calculated analytically, the KS entropy is not yet
directly accessible to analytic methods. Instead one has to use the
transport coefficients and the sum of the positive Lyapunov exponents
to infer the KS entropy of trajectories on the repeller. It would be
very helpful to have a better understanding of the properties of high-
dimensional repellers and to have an independent analytical means to
compute the KS entropy of trajectories on the repeller.

5. One of the main goals of current research in this area is to obtain,
if possible, some deeper understanding of the dynamical basis of the
laws of irreversible thermodynamics. For two dimensional diffusive
models based upon the baker map, it has been possible to show that
the laws of irreversible thermodynamics result from a careful analysis
of the fractal structures that appear in the relevant phase spaces of
these models when the systems are in non-equilibrium steady states[36,
37, 38]. The main physical idea is that entropy is produced by the
irreversible loss of information when changes are taking place in a
system on very fine scales, beyond experimental resolution. However,
as has been emphasized by other authors[39], these models may be
too simple and/or the thermostats considered may be too special to
allow for any general conclusions to be drawn. This area of research
is active and many issues remain to be understood.

6. Our description of fluid systems as composed of classical particles in-
teracting through repulsive, short range forces is certainly incomplete.
Typical fluid systems are better modeled by short range forces with
both attractive and repulsive regions. We do not yet know what effects
a more careful analysis of interparticle forces will have on our picture
of the chaotic behavior of fluids. An even more serious problem is con-
nected with our use of classical mechanics to describe systems which
are quantum mechanical in nature. We have almost no understanding
of how to correctly obtain a quantum version of the classical chaotic
picture of fluids, or even know for sure if such a thing is possible.
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