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Multiple-point and multiple-time correlation functions in a hard-sphere fluid
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A recent mode-coupling theory of higher-order correlation functions is tested on a simple hard-sphere fluid
system at intermediate densities. Multiple-point and multiple-time correlation functions of the densities of
conserved variables are calculated in the hydrodynamic limit and compared to results obtained from event-
based molecular dynamics simulations. It is demonstrated that the mode-coupling theory results are in excellent
agreement with the simulation results provided that dissipative couplings are included in the vertices appearing
in the theory. In contrast, simplified mode-coupling theories in which the densities obey Gaussian statistics
neglect important contributions to both the multiple point and multiple-time correlation functions on all time
scales.
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I. INTRODUCTION

Over the last few years, the emergence of multidim
sional nuclear magnetic resonance~NMR! @1,2# and nonreso-
nant nonlinear Raman@3–5# techniques has generated r
newed interest in the information content of higher-ord
correlation functions involving time correlations of dynam
cal quantities at multiple points and time separations. Th
experimental developments hold great promise for the el
dation of the nature of the underlying dynamics giving rise
complex relaxation behavior in supercooled liquids, po
meric systems, and proteins@6–8#. Concurrently, simulation
studies probing the microscopic origin of dynamical hete
geneity in dense systems@9# have made use of the increas
information content available in multiple-point@10# and
multiple-time @11# correlation functions.

Although there has been some recent work attemptin
reproduce simulation results for the off-resonant fifth-ord
Raman response function@12–14#, there has been little the
oretical work to establish a microscopic theory for gene
higher-order correlation functions. In a previous article@15#,
a general mode-coupling theory was developed in which
long-time behavior for multiple-point and multiple-time co
relation functions was expressed in terms of ordinary tw
time, two-point correlation functions of a set of slow va
ables, which are coupled by vertices containing both st
~called Euler! and dynamic~called dissipative! correlations.
The theory is based upon the assumption that the long-
dynamics of arbitrary variables is a functional of a set
slow modes of the system. The long-time dynamics
higher-order correlation functions is then described by iso
ing the component of the relevant variables along multilin
products of the slow variables, resulting in expressions
the higher-order correlation functions in terms of the sum
an infinite number of multiple-point correlation functions
slow modes. The formulation is made tractable by a cum
lant expansion method~calledN ordering@16,17#! in which
multiple-point correlation functions are factored into conv
lutions over the familiar two-point, two-time correlatio
functions of the slow modes. In this way, the need to s
plify the mode-coupling expressions for higher-order cor
lation functions based on an assumption of Gaussian st
1063-651X/2001/65~1!/011107~12!/$20.00 65 0111
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tical behavior of the slow modes is avoided. It was sugges
that simple mode-coupling theories@18,19# based upon this
Gaussian assumption lead to a relatively poor description
the long-time behavior of higher-order correlation function

The purpose of this article is to validate the mod
coupling theory expressions for multiple-point and multip
time correlation functions by examining the simplest no
trivial system, the hard-sphere liquid. The hard-sphere liq
is a very useful system to examine theoretically since
simple form of the interaction potential allows static corre
tion functions to be related to the radial distribution functi
at contact. In turn, the radial distribution function can
approximated using an accurate equation of state, suc
that of Carnahan and Starling@20#, which relates the pressur
to the density and the temperature. In addition, excellent p
dictions exist for dynamical properties of hard-sphere s
tems based on detailed kinetic theory@21#. Another advan-
tage of looking at hard-sphere systems is that the dynam
of the system can be simulated very efficiently using eve
based molecular dynamics methods@22# since particles
evolve freely between collisions, thereby allowing good s
tistics to be obtained from simulations.

We shall focus on systems of moderate reduced dens
(r* 50.25) in which ‘‘mode-coupling’’ effects leading to
nonexponential relaxation of correlation functions of line
densities, such as the dynamical structure factor, can be
glected. In particular, we target correlation functions of lon
wavelength fluctuations, which decay on long time sca
and exhibit complicated higher-order correlation function

This paper is organized as follows. In Sec. II, the mod
coupling formalism developed in Ref.@15# is reviewed and
adapted to the hard-sphere system. Explicit expressions
presented for three-point and three-time correlation functi
involving linear densities of number~or mass!, transverse,
and longitudinal velocities. In Sec. III, simulation metho
particularly suited for calculating higher-order correlatio
functions in a hard-sphere system are discussed. In Sec
the predictions of the mode-coupling theory are compare
the simulation results for relatively simple three-point a
three-time correlation functions, and it is demonstrated t
dissipative parts of vertices provide additional importa
couplings to those at Euler order. The results are contra
©2001 The American Physical Society07-1
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with those obtained within the framework of the Gauss
mode-coupling theory@18,19#. Finally, conclusions of the
study are given in Sec. V.

II. THEORETICAL FORMULATION

The system under consideration is composed ofN
particles of massm and diametera in a volume V
5Lx3Ly3Lz . The particles interact through the two-bod
hard-sphere potential

V~r !5H 0 if r ,a,

` if r>a.
~1!

Given the form of the potential, the dynamics generated
the Hamiltonian conserves the total number of particlesN,
the total angular momentum, the linear momentaP, and the
energyE of the system. In Ref.@15#, expressions for the
long-time behavior of correlation functions were obtain
under the assumption that the slowly varying part of an
bitrary dynamical variable is an analytic function of a set
slow variablesA of the system. An essential part of succe
fully applying the formalism to a particular system is th
identification of acompleteset of slow variables. To identify
the slow modes of the system, it is helpful to consider
local densities of the conserved variablesN, P, andE,

N~r !5(
i 51

N

d~r2r i !,

P~r !5(
i 51

N

pid~r2r i !,

E~r !5(
i 51

N S pi
2

2m
1

1

2 (
j Þ i

V~ ur i2r j u! D d~r2r i !,

where r i and pi are the spatial position and momentum
particle i. Noting that the Fourier transforms of these den
ties,

Nk5(
i 51

N

eik•r i,

Pk5(
i 51

N

pie
ik•r i,

Ek5(
i 51

N S pi
2

2m
1

1

2 (
j Þ i

V~ ur i2r j u! D cik•r i, ~2!

are slowly varying quantities for smallk5uku since their
time derivatives are proportional tok, the minimal set of
slow variablesAk8 must include all the ‘‘hydrodynamic’’ vari-
ables$Nk ,Pk ,Ek% with k smaller than some cutoff wave vec
tor kc . For our purposes, it is convenient to work with
slightly different basis setAk , composed of the variable
Nk , Lk5Pk

x , T1k5Pk
y , T2k5Pk

z , and Hk5(3Nk

22bEk)/A6, whereb51/(kBT) is the inverse temperatur
01110
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of the system,Pk
z is thex component of the vectorPk , andk

is taken along thex axis. Note that theT1k andT2k are the
transverse modes of the momentum density, whileLk is the
longitudinal momentum density. With this definition of th
basis set, the matrix

^Ak
aAk

b* &5^Ak
aA2k

b &da,b

is diagonal in the hydrodynamic labelsa andb, where^¯&
denotes the grand-canonical ensemble average. The no
ear dependence of the dynamical variables is expresse
terms of a ‘‘multilinear’’ basis set,

Q0[1,

Q1[Ak2^Ak&[Âk ,

Q2[Qk2qQq2^Qk2qQq&2^Qk2qQqQ1* &"K11
21"Q1 , ~3!

]

where the ‘‘•’’ notation denotes a sum over components
the column vectorAk ~the indices of the hydrodynamic var
ablesNk , Lk , T1k , T2k , and Hk!. The subtractions in the
basis set defined in Eq.~3! are included to ensure that th
multilinear matrix,

Klm5^QlQm* &5^QlQm* &d l ,m , ~4!

is diagonal inmode order l. The slow part of any dynamica
variableC is removed by the projection operator

PC[(
l 50

`

^CQl* &Kll
21Ql , ~5!

and the complementary projection operatorP'512P
projects onto the orthogonal subspace.

Writing the three-point correlation function

^Âk2q(t)Âq(t)Â2k& in terms of the basis set, we obtain

^Âk2q~ t !Âq~ t !Â2k&5^Âk~ t !Â2k&•K11
21

•^Â2kÂk2qÂq&

1Gk2q,q;k
21 ~ t !•K11, ~6!

whereGmn(t)5^Qm(t)Qn* &* Knn
21, and, in particular,

Gk2q,q;k
21 ~ t !5

^Q2~k2q,q;t !Â2k&

^ÂkÂ2k&
. ~7!

Note that Eq.~6! is exact in the limitt→0 by construction of
the basis set. Utilizing projection operator techniqu
@17,23,24# and cumulant expansion methods@16#, the
multiple-point correlation functionGk2q,q;k

21 (t) can be ex-
pressed in terms of two-point, two-time correlation functio
as @15#
7-2
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Gk2q,q;k
21 ~ t !5E

0

t

Gk2q
11 ~ t2t!

3Gq
11~ t2t!:M̄ k2q,q;k

21
•Gk

11~t!dt, ~8!

where Gk
11(t)5^Âk(t)Â2k&/^ÂkÂ2k& are the normalized

two-point and two-time correlation functions of the line
densities, and the ‘‘vertices’’ are given by

M̄ lm5F ^Q̇lQm* &2E
0

`

dt^f l~t!fm* &GKmm
21, ~9!

with the fluctuating forcef l(t) defined by

f l~ t ![e~12P!Lt~12P!Q̇l , ~10!

whereL is the Liouville operator.
Similarly, it can be shown that the three-time correlati

function

G111~ t1 ,t2!5^Q1~ t11t2!Q1~ t1!Q1* &•K11
21 ~11!

can be approximately written as@15#

G111~ t2 ,t1!5G11~ t2!* M̄111* G111~ t1!

1G12~ t2!* M̄211* G11~ t1!

1G11~ t2!* M̄112* G21~ t1!1O~N21!,

~12!

whereM̄ lmn is given by

M̄ lmn5^QlQmQn* &•Knn
21. ~13!

Furthermore, it was shown in Ref.@15# that G12(t2) can be
written in terms of the two-point, two-time functions and th
M̄21 vertices in a manner analogous to Eq.~8!.

The symmetry properties of the Hamiltonian can be u
to greatly simplify the analysis of higher-order correlati
functions. For example, since the HamiltonianH is invariant
under the transformationTH5H, where the self-adjoint
time-reversal operatorT acts on an arbitrary phase poi
(rN,pN) by T(rN,pN)5(rN,2pN), all time correlation func-
tions considered here have well-defined symmetry prope
underT, namely,TÂk

a5gaÂk
a , wherega51 for a5N,H and

ga521 for a5T1 ,T2 ,L. Furthermore, since the Liouville
operator L transforms asTL52LT, it is easy to show
@15,25# that ^Ak

a(t)A2k
b &5gagb^Ak

a(2t)A2k
b &. It is straight-

forward to extend these arguments to multiple-tim
correlation functions for whicĥ Ak2q

a (t11t2)Aq
b(t1)A2k

c &
5gagbgc^Ak

a(2t1 2t2)Aq
b(2t1)AÀk

c &.

A. Three-point correlations

We now turn our attention to evaluating the expressio
for three-point correlation functions of three linear densit
of the form in Eq.~6! for several different combinations o
wave-vector and hydrodynamic labels in terms of the line
01110
d
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s
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linear correlation functionsG11(t). For simplicity, we con-
sider correlation functions involving the transverse mom
tum mode T2k henceforth abbreviated as justTk . From
symmetry considerations it is easy to establish that
linear-linear correlation functionGk

Ta(t)50 unlessa5T,
which simplifies the subsequent analysis.

Looking first at the correlation function

^Tk2q(t)Tq(t)N̂2k&, using Eq.~6! we have

^Tk2q~ t !Tq~ t !N̂2k&5
^N̂k~ t !Â2k

a &

^Âk
aÂ2k

a &
^Â2k

a Tk2qTq&

1Gk2q,q;k
TT;N ~ t !^N̂kN̂2k&, ~14!

where the repeated indexa is summed over the labels forN,
T, L, andH, and

Gk2q,q;k
TT;N ~ t ![

^Q2
TT~k2q,q,t !N̂2k&

^N̂kN̂2k&
.

The replacement of the ‘‘21’’ superscript inGk2q,q;k
21 (t) by

‘‘ TT; N’’ above is meant to denote the specific hydrodynam
labels under consideration. The semicolon separating the
bels indicates that the labels ‘‘TT’’ correspond to the bilinear
density, whereas the ‘‘N’’ labels the linear density in Eq.~7!.
Noting that^Â2k

a Tk2qTq& vanishes unlessa5N,H, the first
part of Eq.~14! can be written as

^N̂k~ t !N̂2k&
S~k!

^N̂2kTk2qTq&1
^N̂k~ t !Ĥ2k&

^N&
^Ĥ2kTk2qTq&

5
m

b
^N̂k~ t !N̂2k&2

2m

A6b
^N̂k~ t !Ĥ2k&,

whereS(k)5^N̂kN̂2k& is the static structure factor. The no
malized multiple-point correlation functionGk2q,q;k

TT;N (t) of
the basis set variableQ2

TT can be evaluated using Eq.~8!,

Gk2q,q;k
TT;N ~ t !5E

0

t

Gk2q
TT ~ t2t!Gq

TT~ t2t!

3M̄ k2q,q;k
TT;a Gk

aN~t!dt, ~15!

wherea is summed over the labelsN and H only since the
M̄TT;a vertex vanishes whena5L or T. The explicit form of
the vertex is given by Eq.~9!, which involves a ‘‘Euler part’’

^Q̇k2q,q
TT Â2k

a &

^Âk
aÂ2k

a &

and a dissipative part

2E
0

`

dt^fk2q,q
TT ~t!f2k

a &/^Âk
aĀ2k

a &.
7-3
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These contributions to the vertex can be evaluated as det
in the Appendix, and one finds that to leading order in
wave vector, only thea5L term contributes at orderk ~with
corrections of orderk3!, whereas the other vertex witha
5H gives a contribution proportional tok2. Putting all this
together, we obtain the expression

^Tk2q~ t !Tq~ t !N̂2k&5
m

b
^N̂k~ t !N̂2k&2

2m

A6b
^N̂k~ t !Ĥ2k&

1Gk2q,q;k
TT;N ~ t !^N̂kN̂2k&, ~16!

where

Gk2q,q;k
TT;N ~ t !5E

0

t

Gk2q
TT ~ t2t!Gq

TT~ t2t!M̄ k2q,q;k
TT;L Gk

LN~t!dt

1E
0

t

Gk2q
TT ~ t2t!Gq

TT~ t2t!

3M̄ k2q,q;k
TT;H Gk

HN~t!dt, ~17!

and the functionsGk
TT(t), Gk

LN(t), and Gk
HN(t) are given

explicitly by

Gk
TT~t!5^Tk~t!T2k&/m^N&kBT,

Gk
LN~t!5^Lk~t!N̂2k&/S~k!,

Gk
HN~t!5^Hk~t!N̂2k&/S~k!.

The verticesM̄ k2q,q;k
TT;L and M̄ k2q,q;k

TT;H are given in the Ap-
pendix. Note that if the dissipative parts of the vertices
neglected, only the first time-convolution integral in Eq.~17!

contributes tô Tk2q(t)Tq(t)N̂2k&.
From similar considerations, it is not difficult to obta

expressions for other correlation functions. For example,
find that the multiple-point functionŝTk2q(t)Lq(t)T2k& and

^Tk2q(t)N̂q(t)T2k& are given by

^Tk2q~ t !Lq~2k&5Gk2q,q;k
TL;T ~ t !, ~18!

^Tk2q~ t !N̂q~ t !T2k&5
S~q!

^N&
^Tk~ t !T2k&1Gk2q,q;k

TN;T ~ t !

~19!

with

Gk2q,q;k
TL;T ~ t !5E

0

t

Gk2q
TT ~ t2t! (

a5L,N,H
Gq

La~ t2t!

3M̄ k2q,q;k
Ta;T Gk

TT~t!dt ~20!

and

Gk2q,q;k
TN;T ~ t !5E

0

t

Gk2q
TT ~ t2t! (

a5L,N,H
Gq

Na~ t2t!

3M̄ k2q,q;k
Ta;T Gk

TT~t!dt. ~21!
01110
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In Eqs. ~20! and ~21!, to leading order in the wave vector
the vertexM̄TL;T for a5L contributes at Euler order and i
imaginary, while the verticesM̄TN;T andM̄TN;T contribute at
dissipative order and are real. However, sinceGq

LL(t2t),
Gq

NN(t2t), Gq
HN(t2t), and Gq

NH(t2t) are real and

Gq
LN(t2t), Gq

NL(t2t), and Gq
LH(t2t) are purely imagi-

nary by time-reversal symmetry, the correlation functio
Gk2q,q;k

TT;N (t) andGk2q,q;k
TN;T (t) are real whereasGk2q,q;k

TL;T (t) is
purely imaginary. Note that att50, the expressions for the
functions G21 in Eqs. ~17!, ~21!, and ~20! vanish and the
multiple-point correlation functions are given exactly.

B. Three-time correlations

The three-time correlation functions

Gk2q,q,k
TLT ~ t1 ,t2!5

^Tk2q~ t11t2!Lq~ t1!T2k&

^N&mkBT
,

Gk2q,q,k
TNT ~ t1 ,t2!5

^Tk2q~ t11t2!N̂q~ t1!T2k&

^N&mkBT

can be evaluated in a straightforward fashion using the
sults of the preceding section. In Ref.@15#, it was shown that
the multiple-time verticesM̄ lmn reduce to very simple forms
to leading N order, with corrections of orderM /N;kca
'1025 for systems of moderate density@17#. Using the re-
duced forms ofM̄211 and M̄112 and Eq. ~12!, the leading
N-order expressions for these multiple-time functions are

Gk2q,q,k
TLT ~ t1 ,t2!5Gk2q;k,2q

T;TL ~ t2!^LqL2q&Gk
TT~ t1!

1Gk2q
TT ~ t2!Gk2q,q;k

TL;T ~ t1! ~22!

and

Gk2q,q,k
TNT ~ t1,t2!5Gk2q

TT ~ t2!
S~q!

^N&
Gk

TT~ t1!

1Gk2q;k,2q
T;TN ~ t2!S~q!Gk

TT~ t1!

1Gk2q
TT ~ t2!Gk2q,q;k

TN;T ~ t1!. ~23!

Using the symmetry properties ofGlm(t) @15#, one can write
GT;Ta(t)^ÂaÂa* &5@GTa;T(2t)#* ; and Eqs.~22! and ~23!
can be expressed in terms ofG21(t) alone as

Gk2q,q,k
TLT ~ t1 ,t2!52G2k,q;q2k

TL;T ~ t2!Gk
TT~ t1!

1Gk2q
TT ~ t2!Gk2q,q;k

TL;T ~ t1! ~24!

and

Gk2q,q,k
TNT ~ t1 ,t2!5Gk2q

TT ~ t2!
S~q!

^N&
Gk

TT~ t1!

1G2k,q;q2k
TN;T ~ t2!GK

TT~ t1!

1Gk2q
TT ~ t2!Gk2q,q;k

TN;T ~ t1!, ~25!
7-4
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where the time-reversal symmetry properties and the be
ior under complex conjugation of theG21(t) correlation
functions has been used.

In Sec. IV, these expressions will be compared to res
from simulations of a hard-sphere system at moderate d
sity.

III. SIMULATION METHOD

The dynamics of hard spheres consist of free, rectilin
motion until the distance between two spheres~i and j! be-
comes equal to their diametera, at which point an instanta
neous collision takes place, leading to the moment
changes

pi→pi2ŝ@~pi2pj !•ŝ#,

pj→pj1ŝ@~pi2pj !•ŝ#,

where the collision normalŝ equals (r j2r i)/a at contact.
Due to the simplicity of the equations of motion, the d

namical evolution of the hard-sphere system can be c
puted exactly using an event-driven procedure in which
calculates the first possible collision of all spheres under
assumption that no other particles collide. The phase poin
the system is then evolved up to the time of the earlies
these collisions, and the process is repeated until the
desired run time is completed.

Without additional bookkeeping, the number of sphe
with which a specific particle can collide isN21, and hence
O(N) calculations of collision times are required for ea
particle after it collides. As the number of collisions per u
time is extensive, the simulation time scale increases q
dratically with the number of particles. Considerable im
provements in simulation efficiency can be gained usin
division of the system into regions~called cells! and data
structures to optimize the search for the next collision ti
@26#.

To use the cell structure in a simulation, the system
dimensionLx3Ly3Lz is divided into an integer number o
cells of dimensionl x3 l y3 l z , where each of the lengthsl x ,
l y , andl z is no smaller than the diameter of the hard sphe
Now, in addition to the collision events between spheres,
cell in which each sphere is located and the time at which
particle will leave its cell is recorded. This is advantageo
because the number of spheres that can collide with a g
sphere before a particle moves out of its cell is proportio
to the number of spheres in its vicinity, i.e., the spheres in
same cell or in one of the 26 neighboring cells. Using the c
structures, the number of spheres within the vicinity o
given particle is of orderO( l xl yl zN/LxLyLz)5O(1), pro-
vided the lengths of each cell are of the order of the diam
of the particles, and hence far fewer collision times of pa
of particles must be computed after each collision eve
However, the use of cells comes at the cost of increasing
complexity of the event-driven simulation since after a cro
ing event for a given particle, the collision times of the giv
sphere with spheres that previously were not in its vicin
must be considered, and, if necessary, the first stored c
sion event adjusted. In addition, the next crossing time in
01110
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same direction is recalculated. Similarly, after a collisi
event between two particles, new collisions within the sa
cell, as well as the new cell-crossing times must be cal
lated for the particles involved in the event.

Even though the calculations after a crossing or a co
sion event are ofO(1) when many cells are used, it is sti
necessary to search the event list of each sphere to find
earliest event in the simulation. If the spheres are sim
stored in a linear array, this implies a look-up time that sca
linearly with N, and the algorithm scales asN2 as before,
though with a considerably lower prefactor than without t
cell structure. If, on the other hand, the spheres are store
a binary tree, ordered according to their first event, the sea
for the first event scales as the logarithm of the number
elements, which in our implementation isN. Deleting an
element from the tree is anO(1) operation, while the inser
tion of new elements into the tree requires a tree sea
which scales as lnN. Since the number of crossing and co
lision events is extensive, the algorithm scales asN ln N, and
the overall speed up of the algorithm over a simple eve
based simulation behaves asN/ ln N. It should be noted,
however, that the cell structure reduces the number of co
sions to be considered to a large extent, so the prefacto
also quite reduced.

There is some flexibility in selecting the size of the ce
to be used in the simulation. Larger cells require fewer cro
ing times to be calculated at the expense of increasing
number of collisions, which must be computed within ea
cell. As Rapaport has noted@26#, the optimal choice of the
dimensions of the cell for systems of low density is interm
diate between the size of the full system and the diamete
the hard spheres, whereas the smallest possible cells m
for the fastest simulation for higher densities. In the simu
tions reported in the following section, the optimal length
cells was found to correspond roughly with the diameter
the hard-sphere particles.

IV. RESULTS AND DISCUSSION

In this section, the mode-coupling expressions for
higher-order correlations functions given in Sec. II are co
pared to those obtained from event-based molecular dyn
ics simulations in the microcanonical ensemble at an inve
temperatureb53. The size of the periodic system in th
simulation was chosen to beLx5Ly5Lz515.7526, such tha
for N51382 hard-sphere particles of diametera51, the re-
duced densityr* 50.25 ~r/rc , whererc is the density at
close packing! and the magnitude of the smallest wave ve
tor k0a52pa/Lx50.398 867 coincide with one of the case
in Ref. @27#. A total number of 15353375 cells were used
leading to a collision rate~including data collection! of
roughly 3.23106 h21 on a 600-MHz digital 21164 processo
The event-dynamics simulations were run on nine nodes
30-node ‘‘Beowulf’’ cluster for a total of 4100 CPU hours
where each node carried out 3750 short molecular dynam
trajectories of approximately 403 500 collisions. The init
configuration of the system for each of the individual ru
was randomly chosen using a simple rejection method. In
results reported below, time is expressed in dimension
7-5
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RAMSES van ZON AND JEREMY SCHOFIELD PHYSICAL REVIEW E65 011107
units t/tc , where tc is the mean collision time calculate
from the simulation. At the density and temperature of
simulation, the mean collision time is roughly half the tim
tm it takes a particle to move over a distance equal to
diameter a (tc /tm'0.412).

To evaluate time correlation functions in the simulatio
the values of the linear densitiesAk(t) were calculated for a
set of wave vectors atM11 fixed time intervalst50, Dt,
2Dt,... andstored in an arrayA@k#@ i #, where the indexk
runs over the wave-vector indices andi runs from 0 toM. In
all molecular dynamics runs, the time intervalDt/tm50.15
andM5400. Two-point, two-time correlation functions for
given time interval were accumulated on the fly by stori
the product of accumulated arrays A@k#@(t/
Dt)(modM )#3A* @k#„@(t2s)/Dt#(modM )… in an array for
the correlation function̂Ak(s)Ak* & for all relevant values of
s. At the end of the run the result was divided by the num
of points accumulated. Multiple-point and multiple-time co
relation functions are evaluated in an analogous fashion

Good statistics are difficult to obtain for the higher-ord
correlation functions since the functions are the average
product of multiple factors of the linear densitiesAk . For
example, the three-point correlation functions are c
structed by averages of quantities that are typically of
order ofN3, whereas the final average itself is ofO(N). In
order to optimize the sampling, many relatively short runs
durationR54MDt were performed and averaged on the fl
The strategy of using many short runs seems to be better
the alternative of performing a single long run of equal to
length perhaps because it reduces the effect of abnorm
large points that contaminate the signal for a long time.

Further improvement of the statistics of the calcula
correlation functions is possible by exploiting the isotropy
the system. To simplify the comparison between theoret
predictions and the simulation results, all wave vectors w
taken to be co-linear along thex̂ axis so thatk•q5kq, where
k5uku and q5uqu. Since the wave vectorsk and q
are parallel, the quantities ^Akx̂2qx̂(t)Aqx̂(t)Ak,x̂

* &,
^Akŷ2qŷ(t)Aqŷ(t)Ak,ŷ

* &, and ^Akẑ2qẑ(t)Aqẑ(t)Ak,ẑ
* &, can be

computed from the simulation in a periodic, cubic simulati
box and averaged to obtain improved statistics. In addit
for many of the correlation functions considered here, s
as^Tk2q(t)Nq(t)Tk* &, the number of points used to calcula
the higher-order correlation functions can be effectiv
doubled by averaging over the transverse directionsŷ andẑ.

The estimation of statistical uncertainty in the simulati
data is problematic as it involves constructing an autoco
lation function for each point measured in the tim
correlation function@28#. Such a procedure is both memo
and computationally intensive, and slows down the simu
tion dramatically. In fact, most of the computational time
the simulation is spent accumulating data and calculating
correlation functions rather than performing the molecu
dynamics. We therefore adopt a simpler approach to estim
the error using the symmetry properties of the correlat
functions. From reflection symmetry, it follows that all co
relation functions are either real or imaginary@15#. For a real
correlation function, the imaginary part vanishes and he
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the imaginary part calculated from the simulation gives
rough estimate of the error in the real part, as both are
culated from the same configurations and involve terms
similar structure. To approximate the statistical uncertai
for a real correlation function, a histogram of the values
the imaginary part is constructed to determine the interva
values containing 96% of the points. The size of this inter
provides an estimate of the error in the real part, taken to
constant for all times of the correlation function. Such
approximation seems reasonable given that the variation
the imaginary part in the simulations are observed to be r
tively constant over the total time intervalMDt. For an
imaginary correlation function, the analogous procedure
done using the variations in the real part.

The simulation results for the two-point, two-time corr
lation functions were checked against generalized Ens
theory results@27#. The statistical uncertainty in the norma
ized correlation functions~as obtained by the procedur
above! are quite small~of the order of 0.001!. The numerical
value for the shear viscosity, extracted from the exponen
decay of the autocorrelation function of the transverse ve
ity Tk , was compared to the kinetic theory prediction for th
quantity @21# and excellent agreement was observed.

The time-convolution integrals in the mode-coupling e
pressions for the higher-order correlation functions w
evaluated by numerically integrating data for the two-poi
two-time correlation functionsGk

ab(t) obtained directly from
the simulation. Since the error bars of theGk

ab(t) are very
small, the level of uncertainty in the theoretical predicti
for the higher-order correlation functions is negligible
comparison to the uncertainty in the simulation data for
higher-order correlation function. Furthermore, no significa
differences were noted in the convolution integrals cal
lated using the simulation data and calculated from h
quality functional fits of the integrands. In principle, on
could also use the hydrodynamic forms for all two-poin
two-time correlation functions in combination with an acc
rate equation of state and kinetic theory results for the tra
port coefficients, but since the simple correlation functio
were obtained with great accuracy in the simulation, the
tual data was used.

As described in the Appendix, the dissipative part of t
vertices forM̄TN;T, M̄TH;T, andM̄TT;H have free parameter
vn , vh , and v th , which must be fitted to the data if th
dissipative contributions are to be included in the predictio
for both the multiple-point and multiple-time correlatio
functions. In practice, this is accomplished by selecting p
ticular wave-vector magnitudesk and q and fitting the pa-
rameters according to the simulation results. This proced
is illustrated in Fig. 1 for the multiple-point correlation func
tion

CTL;T~ t !5^Tk2q~ t !Lq~ t !T2k&/^N&mkBT

for wave vectorsk5k0 andq52k0 . Note that although the
dissipative contribution to the overall correlation function
Eq. ~20! depends on the two parametersvn ~n coupling! and
vh ~h coupling!, these parameters can be uniquely det
mined since the asymptotic time behavior is determined
7-6
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MULTIPLE-POINT AND MULTIPLE-TIM E . . . PHYSICAL REVIEW E 65 011107
tirely by then-coupling contribution. Once this parameter
set ~here,vn520.18!, vh can be determined by fitting th
height of the first peak~found to bevh50.90!. A similar
procedure is used for theM̄TT;H vertex in Eq.~17!, which is
relevant for the correlation function

CTT;N~ t !5^Tk2q~ t !Tq~ t !N̂2k&/S~k!,

and it is found thatv th520.62. Note that it is, in fact, the
additional couplings, which arise at dissipative order, t
account for the slow decay of the three-point correlat
function in Fig. 1. It is therefore quite apparent that order
of terms using the wave vector must be done carefully for
system under consideration, since contributions that ap
at higher orders of the wave vector can actually domin
lower-order terms.

With the coupling parameters fixed by the fitting proc
dure, one can then compare the simulation results with
theoretical predictions for arbitrary wave-vector combin
tions. In Fig. 2, the simulation and theoretical predictions
the multiple-point correlation functionsCTL;T(t) and
CTT;N(t) are shown as functions of time for a number
wave-vector combinations. The remarkable agreement
tween the simulation results and the theoretical predicti
of both three-point correlation functions over all time r
gimes and wave-vector combinations is a clear indicat
that the formulation of the mode-coupling theory is soun

It is interesting to see how the theoretical predictions
the present formalism compare to those obtained from
mode-coupling theory in which Gaussian statistical behav
is assumed in the multilinear basis set. This type of assu

FIG. 1. The fitting procedure for the three-point correlati
function CTL;T(t) for the wave vectorsk5k0 , q52k0 , where
k0a50.398 867. The unconnected circles are the simulation res
the solid line denotes the full mode-coupling results, the dotted
denotes the mode-coupling results with Euler vertices, and the lo
dashed and dot-dashed lines represent the contributions from
n-dissipative andh-dissipative vertices, respectively. For clarity, th
statistical uncertainties in all quantities have been omitted.
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tion roughly corresponds to Kawasaki’s original formulatio
of mode-coupling theory@18#, which is based upon a nonlin
ear Langevin equation with Gaussian noise~or fluctuating
forces!. Such a Gaussian theory for the multiple-point cor
lation functions differs from the present formulation in tw
significant ways: First, since the subtractions in the multil
ear basis set@see Eq.~3!# involve static three-point correla
tion functions of the linear densities, which vanish under
assumption of Gaussian statistics, the Gaussian theory
glects terms of the form

^Âk~ t !Â2k&•K11
21

•^Â2kÂk2qÂq&,

which appear, for instance, in the mode-coupling express
for CTT;N(t). These terms make an important contribution
the multiple-point correlations functions on all time scale
and particularly for short times. Second, since the subtrac
terms vanish in the Gaussian theory, the coupling vertices
significantly affected. For example, looking at the Euler o
der contributions to the vertexM̄TT;N, the vertex in the
Gaussian approximation becomesVTT;N according to

M̄TT;N5^Q̇k2q,q
TT N̂2k&/S~k!5^~Tk2q

˙ Tq!N̂2k&/S~k![VTTiN.
~26!

ts,
e
g-
the

FIG. 2. The correlation functionsCTT;N(t) ~left panels! and
CTL;T(t) ~right panels! as a function of reduced time at variou
wave vectors. In the top row, the wave-vector arguments ark
5k0 ,q52k0 @open unconnected circles, simulation results; so
line, mode-coupling theory~MCT! prediction# and k52k0 ,q5k0

~open unconnected squares, simulation results; dotted line, M
prediction!. In the middle row, the wave-vector arguments arek
5k0 , q53k0 ~open unconnected circles, simulation results; so
line, MCT prediction! and k53k0 ,q5k0 ~open unconnected
squares, simulation results; dotted line, MCT prediction!. In the
bottom row, the wave-vector arguments arek52k0 ,q53k0 ~open
unconnected circles, simulation results; solid line, MCT predictio!
andk53k0 ,q52k0 ~open unconnected squares, simulation resu
dotted line, MCT prediction!. For clarity, the statistical uncertaintie
in all quantities have been omitted.
7-7
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RAMSES van ZON AND JEREMY SCHOFIELD PHYSICAL REVIEW E65 011107
Similar differences between the verticesV in the Gaussian
approximation and theM̄ vertices appear in the dissipativ
parts of theM̄TN;T andM̄TH;T ~see Tables I and II!.

In order to assess how each of these differences aff
three-point correlation functions, we once again consider
correlation functionsCTT;N(t) andCTL;T(t). The first corre-
lation function differs not only in the explicit form of the
coupling vertices but also in the form of the expressions
to the subtraction terms in the basis set. The second cor
tion function, on the other hand, vanishes att50 by symme-
try and does not contain contributions that are directly p
portional to two-point, two-time correlation functions@see
Eq. ~18!#. For this correlation function, the differences b
tween the Gaussian and full mode-coupling theory a
solely due to differences between the Gaussian vert
VTN;T, VTH;T and their full counterparts. In Fig. 3, the Gaus
ian and full mode-coupling expressions are compared to
simulation data for the wave vectorsk5k0 , q53k0 . From
these plots, it is clear that the Gaussian theory poorly p
dicts the time dependence ofCTT;N(t) on all time scales and
also gives worse results for the correlation functi
CTL;T(t). Similar behavior can be seen for other wave-vec
combinations.

Turning now to the multiple-time correlation function
the simulation results and theoretical predictions for
multiple-time correlation functions GTLT(t1 ,t2) and
GTNT(t1 ,t2) for several different wave vectors are plotted
Fig. 4 as a function of timet for the time combinations
(t1 ,t2) of ~t,t!, (t,3t), and (3t,t). The excellent agreemen
between the full mode-coupling theory and simulation res
strongly suggests that the assumptions discussed at leng
Ref. @15#, of what determines whether a correlation functi
decays quickly or not, are appropriate. These assumpt
are necessary to obtain mode-coupling equations that ar
cal in time.

Note that the time symmetry properties are evident in
two graphs in the first row of Fig. 4, which correspond to t
wave vectorsk5k0 , q52k0 . For these wave vectors, th
time symmetries can be obtained by noting that

^Tk2q~ t11t2!Aq
a~ t1!T2k&5^Tk2q~ t2!Aq

aT2k~2t1!&,

TABLE I. Expressions for the leading behavior of theEuler

verticesM̄21 and their Gaussian counterpartsV21.

TL;T TT;L

M k2q,q;k
21 ikb21

i 2
3 kp/r

Vk2q,q;k
21 ikb21 2 ikb21
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since the equilibrium distribution function is stationary. I
verting all time arguments and using the properties of
densities under time reversal, one obtains

^Tk2q~ t2!Aq
aT2k~2t1!&5ga^Tk2q~2t2!Aq

aT2k~ t1!&,

where ga51 for a5N, H and ga521 for T,L. When k
2q52k, we find that

^T2k~ t11t2!L2k~ t1!T2k&52^T2k~ t11t2!L2k~ t2!T2k&,

which implies that this correlation function is antisymmetr
under interchange oft1 with t2 ~and therefore vanishes whe
t15t2!, while ^T2k(t11t2)L2k(t1)T2k& is symmetric under
the exchange oft1 and t2 . It is reassuring, though not sur
prising, that the mode-coupling theory respects these ti
reversal properties.

One may also calculate the multiple-time correlati
functions via Eqs.~24! and~25! using the simulation data fo
the multiple-point functionsGTN;T and GTL;T. However,
since the mode-coupling results for these functions are
ready in excellent agreement with the simulation data,
improvement obtained using the simulation results for
G21 is generally statistically negligible. Furthermore, th
simulations to calculate the multiple-point functions a
computationally intensive compared to calculations of
two-point functions. It is therefore far easier to generate p
dictions with small statistical uncertainties using the mod
coupling theory expressions for the multiple-point function

FIG. 3. The full mode-coupling theory~MCT!, Gaussian MCT,
Euler-order MCT predictions, and simulation data for the corre
tion functionsCTT;N(t) ~left panel! and CTL;T(t) ~right panel! at
wave vectorsk5k0 and q53k0 . In both panels, the unconnecte
circles are the simulation data, the solid, dotted, and dashed
represent the full MCT, the Euler-order MCT, and the Gauss
MCT results, respectively. The error estimates represent 96%
fidence intervals. Note that the Gaussian MCT theory is qual
tively incorrect on all time scales forCTT;N(t).
TABLE II. Expressions for leading behavior of thedissipativeverticesM̄21 and their Gaussian counterpartsV21. Note that in the table
k andq stand for thex component ofk andq, respectively.

TH;T TN;T TT;H

M k2q,q;k
21

2k(k2q)@vh2A2
3 h/mr# 2k(k2q)vn1k2S(q)h/mr 2k2@v th1(4m/2A6b)(l/kB)#

Vk2q,q;k
21 2k(k2q)vh2kqh/mr 2k(k2q)vn 2k2v th
7-8
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MULTIPLE-POINT AND MULTIPLE-TIM E . . . PHYSICAL REVIEW E 65 011107
Since the mode-coupling formalism relates the multip
time correlation functions to multiple-point correlation fun
tions, the deficiencies in the Gaussian theory for the thr
point functions are carried over to the predictions for thr
time functions. This point is confirmed by the difference
the behavior of the Gaussian versus full mode-coupl
theory results for the multiple-time correlation functio
shown in Fig. 5. Once again, the Gaussian theory predict

FIG. 4. The multiple-time correlation functionsGTNT(t1 ,t2) and
GTLT(t1 ,t2) as a function of reduced time for various wave-vec
combinations. In all panels, the unconnected dots, crosses, an
angles correspond to the simulation results for the time argum
t15t,t25t, t153t,t25t, andt15t,t253t, respectively. The solid,
dashed, and dotted lines correspond to the respective m
coupling predictions. The results in the top, middle, and bott
rows are for the wave-vector argumentsk5k0 ,q52k0 , k5k0 ,
q53k0 , andk52k0 ,q5k0 . For clarity, the statistical uncertaintie
in all quantities have been omitted.

FIG. 5. The full mode-coupling theory~MCT!, Euler-order
MCT, and Gaussian MCT predictions and simulation data for
multiple-time correlation functionsGTNT(t1 ,t2) ~left panel! and
GTLT(t1 ,t2) ~right panel! at wave vectorsk5k0 and q53k0 and
time argumentst153t,t25t. In both panels, the unconnecte
circles are the simulation data, the solid, dotted, and dashed
represent the full MCT theory, the Euler MCT, and the Gauss
MCT results, respectively. The error estimates represent 96%
fidence intervals.
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for multiple-time correlations are qualitatively incorrect o
all time scales, and particularly so for correlation functio
that do not vanish whent15t250. Furthermore, as might b
expected from the discussion above of the dissipative con
bution to the three-point correlation functions, the inclusi
of the additional couplings arising at dissipative order is
sential if quantitatively accurate predictions for the multip
time correlation functions is desired.

In principle, in the limit of very small wave vectors, on
might expect that the additional couplings in the higher-or
correlation arising from the dissipative part of the vertic
become less important and may be neglected. In fact, th
not always the case since the overall order in the wave ve
of the various terms in the expressions forG21 is determined
by a wave-vector dependent prefactor~the vertex! multiplied
by the time convolution of two-point, two-time correlatio
functions. The time convolution of functions such asGk

LN(t),
which vanish ask→0, can give additional factors of th
wave vector. Thus, for instance, the contribution from t
first term in Eq.~19! ~with a vertex of Euler order! is in fact
of the same order of magnitude as the contribution from
last two terms, which involve vertices of dissipative order
the hydrodynamic limit.

To obtain smaller wave vectors in a simulation to nume
cally check these considerations for dense systems in w
the mode-coupling effects are important, one would need
simulate larger systems with more particles. There are
difficulties with the simulation method applied to larger sy
tems that make it difficult to obtain good statistics for t
higher-order correlation functions. First, since the use
cells is memory intensive and the optimal number of ce
scales as the cube of the length of the system, one m
utilize a cell structure for the simulations, which is not op
mal, leading to a reduction in simulation efficiency. Secon
the quality of the statistics for the higher-order correlati
functions decreases essentially as the square of the nu
of particles. It is therefore computationally challenging
obtain accurate simulation results for the higher-order co
lation functions for larger systems.

V. SUMMARY AND CONCLUSIONS

In this paper, the predictions for higher-order correlati
functions based on the mode-coupling formalism develo
in Ref. @15# were evaluated in the hydrodynamic limit for
hard-sphere system at moderate densities and compare
simulation results. It was demonstrated that the mo
coupling theory yields excellent results for all higher-ord
correlation functions provided that dissipative as well Eul
order vertex coupling terms are included in the theory. T
good agreement between the theoretical predictions and
simulation results confirms that the assumptions underly
the mode-coupling theory, of how slow and fast decay
arbitrary densities can be separated in a systematic fash
are quite reasonable.

In contrast to some mode-coupling theories of simple l
uids @18,19#, the present mode-coupling theory includes
multilinear densities in the set of slow variables, does
neglect corrections to the ‘‘factorization’’ approximation, an
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RAMSES van ZON AND JEREMY SCHOFIELD PHYSICAL REVIEW E65 011107
does not assume Gaussian statistical properties of the
dom noise or fluctuating force. As the formalism allows e
act expressions to be obtained for all correlation function
the thermodynamic limit, it provides a systematic way
examine the various assumptions that must be made in o
to predict the time dependence of simple and higher-or
correlation functions, or to form comparisons with oth
theories. Along these lines, it was demonstrated that
‘‘non-Gaussian’’ behavior of the random noise is importa
for the proper description of the multiple point correlatio
functions on all time scales. In particular, the Gauss
theory for three-point functions leads to oversimplified co
pling vertices that have significant quantitative consequen
and more importantly, neglects important couplings to lin
densities. Since the mode-coupling theory expresses
multiple-time correlation functions in terms of two-time
higher-order correlation functions, the Gaussian theory
similar deficiencies in describing the three-time correlat
function of linear densities.

The calculation of higher-order correlation functions
extensive linear densities in the hydrodynamic regime at
to intermediate densities is computationally intensive. T
poor statistics obtained from the simulation arises from
eraging quantities of orderN3 to obtain a signal of orderN.
However, since densities of tagged particles do not sc
with the number of particles, higher-order correlation fun
tions of tagged particle densities should not suffer from t
problem. The extension of the mode-coupling theory
higher-order correlation functions to nonextensive densi
of tagged particles is straightforward, and will be presen
in a future publication.

It is obviously desirable to apply the mode-coupling fo
malism to dense and supercooled liquids where correla
functions exhibit more complicated time behavior. In den
systems, there is compelling evidence@27#, which suggests
that the eigenmode spectrum of the Liouville operator
simple liquids changes, and a generalized ‘‘heat’’ mode
comes long lived even at fairly large wave vectors. At lar
wave vectors, this mode roughly corresponds to a s
diffusion mode@29# that is slow in dense liquids due to pa
ticle caging effects. Within the mode-coupling formalism
the emergence of this short-wavelength collective mode
plies that the cutoff wave vectorkc for the heat mode be
comes of the order of inverse molecular length scales. Un
these circumstances, the mode-coupling correction term
the expressions for the higher-order correlation functions
not expected to be small and must be considered. Appro
ately defined higher-order correlation functions may be qu
useful in examining the microscopic origins of complex r
laxation behavior and dynamical heterogeneities. To this e
one may examine the higher-order correlation functions
much larger wave vectors using a mode-coupling theory
which the modes forming the basis set for the long-ti
behavior are associated with physical processes on t
length scales. In fact, the structure of the mode-coup
theory suggests that measures of dynamical heteroge
based on multiple-point correlation functions@10# are quite
closely related to measures based on multiple-time corr
tion functions@11#. These issues are currently being pursu
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APPENDIX: EVALUATION OF THE VERTICES

In this appendix, all vertices used to formulate numeri
predictions for higher-order correlation functions are giv
for the sake of completeness. To leading order in the w
vectors, all vertices are either of Euler order~orderk! or of
dissipative order~order k2!. Since the second term in th
expression for the vertices in Eq.~9! involves two time de-
rivatives of hydrodynamic densities, it is at least of quadra
order in the wave vectors. Therefore the Euler order of a
vertex is given by the static correlation function~first term!
of Eq. ~9!. This static correlation function is imaginary an
an odd function of the wave vector. The leading order o
vertex of quadratic order in the wave vector is therefo
given by the second term in Eq.~9!. For the hard-sphere
system, all static correlation functions in the zero wav
vector limit can be evaluated exactly if the radial distributi
function at contactg(a)5x is known. The calculation of the
vertices at Euler order is facilitated by considering the ide
tity, valid in the canonical and grand-canonical ensemble

^ȦB&5b21^$A,B%&, ~A1!

which links the time derivative to a Poisson bracket of t
densities. It follows fromȦ5$A,H% and from the form of
the distribution function,

E $A,H%Be2bHdG5E F]A

]q
B

]H
]p

2
]A

]p
B

]H
]q Ge2bHdG,

which, by partial integration, yields

b21E F ]

]p S B
]A

]q D2
]

]q S ]A

]p
BD Ge2bHdG

5b21E $A,B%e2bHdG.

To evaluate the higher-order correlation functions in t
text, the verticesM̄TT;L and M̄TL;T are needed. The latter i
the simplest, asQ2

TL5Tk2qLq , so

M̄ k2q,q;k
TL;T 5b21^$Tk2qLq ,Tk* %&/^TkTk* &

5 ikb21^Tk2qTk2q* &/^TkTk* &5 ikb21,

where we have used$AB,C%5A$B,C%1$A,C%B and the
fact that$Tq ,Tk* %50 and$Lq ,Tk* %5 ikTk2q* .

It is straightforward to show thatQ2
TT5Tk2qTq2 2

3 mEk ,
so using the above result for$L, T%, we obtain

M̄ k2q,q;k
TT;L 52 ikb212 2

3 ^$Ek ,Lk* %&.
7-10
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The energy can be split into a kinetic and a potential p
The kinetic contribution toMTT;L is easily calculated, and
MTT;L can be expressed as

M̄ k2q,q;k
TT;L 5 i 2

3 kb212 2
3 ^$Ek

pot,Lk* %&.

The second term on the right-hand side of the equation ab
can be evaluated by noting that

$Ek
pot,Lk* %5 1

2 (
j Þm

@eik•rm j21# x̂•] r j
V~r m j!

52 1
2 (

j Þm
i ~k•rm j!x̂•] rm

V~r m j!1O~k2!,

whererm j5rm2r j , which implies

^$Ek
pot,Lk* %&52 1

2 ik^N&rE r ~ x̂• r̂ !x̂•@] rV~r !#g~r !dr ,

whereg(r ) is the radial distribution function. Performing th
angular integration and writingg(r )5h(r )e2bV(r ), so that a
partial integration can be performed, leads to

^$Ek
pot,Lk* %&52 ik

2pr^N&
3b E

a

`

] r„r
3h~t!…dr52 ikbrNx,

whereb[2pa3/3 andx is the radial distribution function a
contact. x can be estimated using the Carnahan-Star
equation of state@20# and the expression for the pressurep of
a hard-sphere system,

bp

r
5

11h̄1h̄22h̄3

~12h̄ !3 511brx,

whereh̄ is the packing fraction given byh̄5pra3/6.
Combining all terms, one obtains

M k2q,q;k
TT;L 5 i 2

3 kp/r.

Turning now to the calculation of the dissipative part
vertices, their specific wave-vector dependence is determ
as follows: The derivative of a conserved density can
written as

Ȧk
a' ik•Jk

a ,

where Jk
a is the current associated with the hydrodynam

variablea. What is needed in Eq.~10! is thedissipativecur-
rent j k

a[(12P)Jk
a . Looking first at the vertexM̄TH;T, using

Qk2q,q
TH 5Tk2qHq2

^Tk2qHqT2k&
mNkBT

Tk5Tk2qHq1A2
3 Tk ,

the vertex can be expressed as

M̄ k2q,q;k
TH:T 52kx~kx2qx!vh2kxqxvh8

2kx
2A 2

3 E
0

` ^ j k
T~ t ! j 2k

T &
m^N&kBT

dt, ~A2!
01110
t.

ve

g

ed
e

where

vh5E
0

` ^Jk2q
T ~ t !Hq~ t ! j 2k

T &
m^N&kBT

dt,

vh85E
0

` ^Tk2q~ t !Jq
H~ t ! j 2k

T &
m^N&kBT

dt. ~A3!

Similar expressions can be obtained for the parametersvn
and v th appearing in theMTN;T and MTT;H vertices ~see
Table II!. To obtain the leading behavior for small wave ve
tors, the wave vectors in the integrals can be set to zero,
the projected dynamics Liouvillian in the exponent in E
~10! can be replaced by the full Liouvillian. Then, the Gree
Kubo expression for the viscosityh can be recognized in the
last term of Eq.~A2!,

h5
b

V E
0

`

^ j T~ t ! j T&dt. ~A4!

For the viscosityh and the heat conductionl ~which figures
in the expression forM̄TT;H!, we take the Enskog expres
sions@21#,

h5h0brS 1

brx
1

4

5
10.7614brx D ,

l5l0brS 6

5
1

1

brx
10.7574brx D .

where the Boltzmann value of the shear viscosityh0 and
thermal diffusivityl0 are given by

h05
5

16a2 S m

bp D 1/2

,

l05
75

64a2 kB S m

bp D 1/2

.

For the particular parameters of the simulation, it w
checked by studying the decay of simple correlation fu
tions that the Enskog expressions are accurate.

In principle, integrals of time correlation functions o
products of two currents and a density, as in the expres
for vh and vh8 in Eq. ~A3!, can be written in the hydrody
namic limit in terms of transport coefficients and derivativ
of transport coefficients with respect to thermodynam
quantities like the temperature and chemical potential. Di
pative contributions such as these have already been ev
ated by Lim@30# in the zero wave-vector limit in the contex
of generalized hydrodynamics. In fact, the expression forvh8
can be related to the viscosity@30# as

vh85S 2

3D 1/2 h

mr
,
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whereasvh can be expressed in terms of the viscosity and
derivatives of viscosity with respect to the temperature a
chemical potential. Using the form forvh8 , M k2q,q;k

TH;T can be
written as

M̄ k2q,q;k
TH;T 52kx~kx2qx!Fvh2S 2

3D 1/2 h

mrG . ~A5!

Since it is not known how well the derivatives with respe
u

r,

.

r,

es

C

01110
e
d

t

to temperature and energy of the approximate kinetic the
expressions for the transport coefficients correspond to t
actual values,vh , vn and v th are taken as free paramete
that will be fitted from simulation data.

The expressions for the vertices that are needed in the
are listed in Tables I and II. Also tabulated are the vertic
one would obtain from a Gaussian theory in which sta
three-point correlation functions are set to zero. The
Gaussian vertices are denoted byV21.
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