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Pairing of Lyapunov exponents for a hard-sphere gas under shear in the thermodynamic limit
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We consider a dilute gas of hard spheres under shear. We use one of the predominant models to study this
system, namely, the so-called SLLOD equations of motion, with an isokinetic Gaussian thermostat in between
collisions, to get a stationary total peculiar kinetic energy. Based on the previously obtained result that in the
nonequilibrium steady state and in the case the number of parfitleecomes large, the coefficient of
dynamical friction representing the isokinetic Gaussian thermostat for the SLLOD dynamics fluctuates with
1/yN fluctuations around a fixed value, we show on analytical grounds that for a hard sphere gas at small shear
rate and with a large number of spheres, the conjugate pairing of the Lyapunov exponents is expected to be
violated at the fourth power of the constant shear rate in the bulk.
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[. INTRODUCTION sum of the largest and the smallest, the sum of the second
largest and the second smallest, and so on, were the same.
Nonequilibrium molecular dynamic$NEMD) simula-  The phenomenon of such pairing of the Lyapunov exponents
tions of Navier-Stokes equations have been used to study ttie known as the conjugate pairing rule, or the CPR. Since it
shear viscosity properties of fluids for a long time. To studyis, in general, difficult to calculate all the individual
the coefficient of shear viscosity in Navier-Stokes equationslyapunov exponents of a system, an extensive theoretical
a carefully chosen periodic boundary condition in NEMD study soon ensued to understand the CPR for the Lyapunov
simulations is enough to drive the system out of equilibrium.exponents of systems obeying the SLLOD equations of mo-
Based on these ideas, in the early days of the development tin. Evans and co-workers investigated this p@jtto con-
this subject, an algorithm was constructed from simple New<lude that the Lyapunov exponents pair exactly for general
tonian equations of motion using periodic boundary condi-interparticle potentials andll y. In a follow-up work, Sar-
tions, the so-called Lees-Edwards boundary conditids man et al. [7] carried out simulation studies in support of
However, it was soon realized that in the absence of an exRef.[6].
plicit dependence on the shear field in this algorithm, one In the next few years, the connection between the dynami-
could not make an appropriate connection with the Greeneal systems theory and statistical mechanics saw a surge of
Kubo relations, and therefore, it was difficult to deal with theinterest. Some situations were found, where it was possible
subject from a theoretical point of view. As a remedy, someto prove that the CPR is satisfied exadi~11]. The status
other algorithm with an explicit dependence on the sheapf the CPR for the SLLOD and the DOLLS dynamics was
field was called for, and the DOLLS and the SLLOD algo- revisited. For a system of particles obeying the SLLOD and
rithms were born. the DOLLS dynamics with a WCA interparticle potential and
The main idea behind the DOLLS and the SLLOD algo-arbitrary y, CPR was reported to be violated on the basis of
rithm is an explicit dependence on the shear field,The  simulation result$12,13, but recently it was shown that this
DOLLS algorithm was implemented fir§2]. The SLLOD claim is based on an erroneous analysis of the Lyapunov
equations of motion were proposed soon aftd; and are  spectrum[14]. However, for these two systems, no attempt
now preferred because they are equivalent to the boundagf atheoreticalunderstanding about the nature of an approxi-
driven method4]. Both algorithms have to be supplementedmate CPR has been carried out so far. In this paper, we
by a thermostat, which continuously removes the energyddress and attempt to clarify these issues. We find that for a
generated due to the work done on the system by the shedilute gas of hard spheres obeying the SLLOD dynamics,
field such that a nonequilibrium steady stélfESS, homo-  where the masses and the radii of the spheres are not neces-
geneous in space, can be reached. sarily the same, and the total peculiar kinetic energy is kept
In this paper, we will look at the SLLOD equations of constant by applying the iso-kinetic Gaussian thermostat in
motion for a gas of hard spheres from the point of view ofbetween collisions, the CPR is violated at the mod&g?),
dynamical systems. The Lyapunov exponents of a system dbr small y, in the thermodynamic limif15]. Our analysis is
particles, obeying the SLLOD equations of motion and mu-based on the key idea that the coefficient of friction repre-
tually interacting by means of WCA potential with an isoki- senting the isokinetic Gaussian thermostat for a dilute gas of
netic Gaussian thermostat, was first studied by Moffiigs  particles mutually interacting by means of a short-ranged
The study showed that the shear viscosity can be obtaingabtential and obeying the SLLOD dynamics with a small
from the sum of all the Lyapunov exponents. The simulationshear rate, in the NESS, reaches a fixed value in the thermo-
results in Ref.[5] also indicated that once the Lyapunov dynamic limit, with 14/N fluctuations, wheré\ is the num-
exponents are arranged in ascending order of magnitude, ther of particled16].
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The structure of the paper is the following: in Sec. Il, we of the gas particles is therefore described by Eg<®) and
describe equations of motion for the SLLOD dynamics, de<2.3) with F;=0. As far as the dynamics in collisions is
fine the Lyapunov exponents, and discuss the sufficient corconcerned, it is possible to derive the limiting behavior of the
ditions for an exact CPR. In Sec. Ill, we demonstrate howisokinetic Gaussian thermostat Bs— [17], but this leads
the coefficient of friction representing the isokinetic Gauss-to rather complicated collision rules. For the purpose of sim-
ian thermostat is expected to reach a fixed value at the theplicity, in this paper, we choose to apply the isokinetic ther-
modynamic limit, with 14N fluctuations. In Sec. IV, we mostat onlyin between collisionsThus, at an instantaneous
present the explicit calculations and discuss the status of agpllision between theith and the jth sphere {j
approximate CPR. To make the calculations in Secs. II-IV=1,2, ... N; i#]), the postcollisional positions and labora-
simple, we assume that each of the gas particles has a undry momenta ¢ subscripts are related to their precolli-
mass. Finally in Sec. V, we end this paper with discussionsional values { subscript by
on possible generalizations, including the generalization to
the case when the masses of the gas particles are arbitrary. li+=ri-, rIj+=rj—, (2.9

Il. THE SLLOD EQUATIONS OF MOTION Vie=Vio—{(vi_—vj_)-nijng, (2.9

FROM A VIEWPOINT OF DYNAMICAL SYSTEMS and

A. Equations of motion

The SLLOD equations of motion describe the dynamics Vi =Vj- H{(Vi- = Vo) -miging 2.6

of a collection ofN particles constituting a fluid with a mac- while the positions and the velocities of the rest of the

roscopic velocity fieldu=yyx (i.e., the gradient of the  pparaq remain unchanged. Hetg,is the unit vector along
component of the macroscopic fluid velocityin y direction the line joining the center of thith sphere to thgth sphere

is ). For simplicity, each gas particle is assumed to have & yhe instant of collision. Note that although in any particu-
unit mass. The specific form of the SLLOD equations of 5. ¢qjiision, the peculiar kinetic energy changes over a col-
motion for theith particle, in terms of its positiom; and jision these changes are random, both in magnitude and
peculiar momentunp; , is given by sign, due to the randomness of the collision parameters, and
. aA - hence it is quite likely that the system would reach a steady
N=pitoyixo =R ypyX—ap;, (2D state, where the average change of peculiar kinetic energy
: - ; would be zero.
where F; is the force on thdth particle due to the other To studv the SLLOD dvnamics as a dvnamical svstem in
particles in the system. The peculiar velocity of a particle isth di y the di ynamn liv d y i ﬁyt
defined as its velocity with respect to the velocity of the flow ree llmen5|ons{ € dimensionaiity does not aftect our
at its location and the peculiar momentum of a particle is th@nalys& we form the 3\l—d|men3|on§1I vectors R
product of its mass and its peculiar velocity. The valuerpf =(r1.72, - Fn), V=(V1,V2, ... V) andN;;, whoselth
the coefficient of friction representing the isokinetic Gauss-entry is given byN!j =(61,i— &, )nj 2 (1=1,2,...N).
ian thermostat in Eq(2.1), is chosen such that the total pe- Using these new variables, we write the SLLOD equations of
culiar kinetic energy of the syster,;p?/2, is a constant of motion in the ¢;,v;) coordinates oN hard spheres during a
motion, i.e., flight, Eqg. (2.3), in a compact form

N . .
R=V, V=ayCR—aV. 2.7
El (Fi-pi— yPixPiy)

a= (2.2 Here, C is a ANX3N matrix with NXN entries, each of

" ) which is a 3x 3 matrix. In terms of the entry index,Mm), in
Zl Pi the xyz basis,C;,=cd, (I,m=1,2,...N) and
The SLLOD equations of motion, without the dissipative 010
term — ap;, cannot be derived from a Hamiltoniganlike c=xy=|0 0 O], (2.9
the DOLLS equations of motign 0 0 0

We will use the equations of motion exclusively in terms

of the particles’ positions; and laboratory velocity;. This At a collision between théth and thejth sphere, the equa-
introduces the change of variable frggnto v;=p;+ yy;xin  tions of motion are given bj11]
Eg. (2.2), which can then be written as o

_ ) . Ri=R_, V,=V_—-2(V_-NjN;j. (2.9

ri=Vv, Vi=Fi+ayin— avi. (23)

In our analysis hereafter, except for Sec. Ill, we will use only
In the present context, the gas particles are hard spherégys.(2.7) and(2.9) to describe the dynamics.

of arbitrary radii. This reduces the dynamics of the gas par- At this point, we introduce the following notations. A
ticles to an alternating sequence of flight segments and irphase space point can be denotedl'as(R,V). A linear
stantaneous binary collisions. During a flight, the dynamicdransformation on phase space can be given adl & &N
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matrix. Any such matrixP can be split in terms of four!l8  where L(t—tg)=[L(t—to)]"L(t—t,). The corresponding

x 3N sub-blocks, for which we use the notati®ft!, P2, directions for the exponential expansion and contraction of
PEI andPMl, such that the phase spacéi(V) are obtained from the eigenvectors of
L(t—to).
plil  pl2] The dynamics ofsI'(t) in Eq. (2.1, for a gas of hard
P:[p[:"] P[‘”} (2.10 spheres, can be decomposed into an alternating sequence of

flights and instantaneous binary collisions. We denote the
transformation ofsT'(t) over a flight segment betwee¢rand
Each sub-blockPll (i=1, ... 4)itself can be divided in t+At by H(At) such that

3X 3 sub-blocks again, where each sub-block can be identi- )

fied by two indiced andm, | along the horizontal anth SP(t+AD=H(ADSI(t) with H(O)=I. (2.13
along the vertical directionl(m=1,2, ... N). Such a sub-

; Explicitly, H(At) i tai f
block is denoted by}l . xplicitly, H(At) is obtained from

ST(t)=T(t)sT(t) (2.19

B. Lyapunov exponents for hard-sphere systems as

To calculate the Lyapunov exponents for hard-sphere sys-
tems, let us assume that the system starts at tjnat a JHMdt’T(t’)
phase-space locatidri(ty) = (R(tg),V(tg)). Under time evo- ¢
lution, I'(t) follows a trajectory in the Bl-dimensional phase
space, which we call the “reference trajectory.” The seNof Where the subscripT indicates time ordering. Notice that
hard spheres would suffer a sequence of binary collisions ohl(At) in a general system will depend on tirhas well, but
this trajectory. We also consider an infinitesimally displacedwe have suppressed that in our notation. If we now denote
trajectory in the phase space, which starts at the same tintbe transformation ofsI'(t) over an instantaneous binary
to, but at I''(tg) =I'(to) + 6'(ty). Under time evolution, collision (say, between théth and thejth spherg by the
I''(t) follows another trajectory, always staying infinitesi- matrix M;; , we can express the matrix(t—t,) in terms of
mally close to the reference trajectory. This trajectory we calthe H andM;; matrices in the following way: if the dynamics
the “adjacent trajectory.” We also assume that the seNof involves flight segments separated dinstantaneous binary
hard spheres on the reference and the adjacent trajectoriesllisions atty,t,, ... ts such thatto<t;<t,<...<ts<t,
suffer thesamesequence of binary collisions. We denote thethen
time evolution of the infinitesimal B-dimensionaltangent
vector SI'(t) over time ¢—t,) by the BNX 6N matrix L(t L(t—to) =H(Aty)M; j H(Ats ) - "V|i11'1H(At0)-(2 6
—tp), i.e., .

ST(t)=L(t—tg) oI (to). (2.11 Here Atj=t;,,—t; fori=1,2,...,6—1) andAts=t—t;.

H(At)=expr , (219

. . C. The sufficient conditions for an exact CPR
The Lyapunov exponents are the possible exponential growth

rates in time off Lfl for different directions of unit vectors Ifthe CPR is exactly satisfied for a dynamical system, the

sum of the conjugate pairs of the Lyapunov exponents is
I'. We have to define the norm in an appropriate way. Maksome constant, i.e., if \; is a Lyapunov exponent of this
ing the time it takes for a sphere with a typical veloaiyto  system, therc—\; is also a Lyapunov exponent. The proof
cross the distance of a typical radius of a sprey®ur unit  of a possible conjugate pairing rule will follow from the
of time (i.e., o/v, is set to 1) solves the problem that the properties of the matrix(t—to). However, to understand
components of" have different dimensions. For the inner the interplay between the properties of the matr(x—t,)
product between two tangent vectasF™") = (sR™M), sv(1) and an exact CPR in full generality, below we first look at
and sST®@ = (5R®, 5V we use the property ofL(t—tg) that has been used in various cases
to prove CPR.

(@ If the matrixL(t—tg) is symplectic, i.e.L(t—tp) sat-

N
isfies the symplectic condition

(sT ) 51“(2)):;1 (orM. sr@+ v sv(2).
[L(t=to)]IL(t=tg)=J,

The norm is now defined 91| = \{ ST o). with J as the usual symplectic matrix, then
The Lyapunov exponents are the logarithms of the eigen- ~ .
values of the matrixA, defined by L(t—to)IL(t—to)=J. (217
Equation(2.17) can be used to show that
A= lim[L(t—tg) M2t (2.12 N N
toco DefL(t—ty)—LI]=0
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(with | the identity matrix implies is satisfied with a time-dependent scalar quantitythen Eq.
(2.20 can be shown to hold for an eigenvaITJEDf the ma-

=0. (2.18 trix C(t—tp), implying that the CPR is exaf:tly satisfied for
such a dynamical systefd9]. In analogy with the nomen-
clature presented ifb), we call Eq.(2.21) a “generalized

This means that if. is an eigenvalue of (t—t,) then so is  #-Symplectic condition” with matrixK. We emphasize that

L1, Since the Lyapunov exponents are the logarithms of th&1® necessary condition for an exact CPR to hold for a dy-

eigenvalues of the matriA, defined in Eq(2.12, itis easy ~hamical system is not known.

to see that=0. All Hamiltonian systems fall in this class. In_ view of Eq. (2.2, thus, one should look for SL_JCh a
(b) In the existing literaturd8—11], the concept of the matrix K to prove an exact CPR. Instead, we look at it from

symplectic condition defined above, has been generalized @ different angle, namely, that we would like to understand
the so-called ‘u-symplectic condition” and applied to ther- NOW the SLLOD dynamics oR hard spheres with an isoki-

mostatted systems where an isokinetic Gaussian thermostagtic Gaussian thermostat deviates from an exact CPR.
keeps the totalaboratory kinetic energy constant and the

external force on the constituent particles of the system idll. BEHAVIOR OF a IN THE THERMODYNAMIC LIMIT
dependent only on the positions of the particles. For these
systems, in an appropriate reduced phase space characteri%
by all the nonzero Lyapunov exponents, the matirii
—1p) satisfies thigu-symplectic condition, which means that
there exists dme-dependent positive scalguantity u, such
that[L(t—t) ]"JL (t—to) = wJ. This implies that

3 1
Det{ C(t—tg) — f'

ur procedure to study the deviations from CPR begins
the following observation: in the thermodynamic limit,
for the SLLOD dynamics with short-range interparticle po-
tentials at low density of spheres and at smalthe behavior
of « simplifies to a great extent. After some transient time
the system reaches the NESS, and the coefficient of friction
« fluctuates with 1{N fluctuations around a fixed valug,
[16]. For not too large fluctuations, the distribution function
for a can also be shown to be approximately Gaussian. Thus,
to calculate the Lyapunov exponents for lafgat low den-
Pt )T 1= sity of spheres and at sma}l to which we confine ourselves
DefL(t=to)~L1]=0 henceforth @ can be replaced by, in Eq. (2.7). We will
then also now briefly present the gist of the derivation in REL6],
applied to hard spheres.
For a hard-sphere system, the force term in Eg<) and

C(t—to)IL(t—tg)=pu?d, (2.19

which can be used to derive that if

2
Det{ I:(t—to)— %I =0, (2.20 (2.2 is zero during a flight. Thus, for a flight, we have
N -1 N
. ~ L~ . _ 2

for an eigenvalud. of the matrixL(t—tg). This means that a=—vy 21 pi 21 PixPiy - 3.1

~ ~ ~ 1= =
if L is an eigenvalue ok (t—ty) then so isu?L L. In that
case, one finds from Eq2.12) thatc=lim,_..(In w)/(t-t).  Introducing a second thermostat variable
If the system is ergodic, then this long time averagecfoan
be equated to a NESS average. Notice that conditpris N -1N
obtained as a special case of conditidm, namely, when B=v? E pi2 Z pizy, (3.2
M= 1. i=1 i=1

Returning momentarily to the SLLOD dynamics, we ob-
serve that the formalism developed in Ref8-11] fails
here. The primary reason is associated with the fact that the
total peculiar kinetic energy is held constant for the SLLOD
dynamics, as opposed to the tokaboratory kinetic energy _
in Refs.[8—11]. One however needs to interpret the state- B=—2ap. (3.3
ment regarding the connection between the violation of con- i i . ) i )
dition (b) and the nonexactness of the CPR with care. ByThese equatl_o_ns are valid during the flights, i.e., the intervals
virtue of the fact that conditiofb) above is a sufficient con- Petween collisions. _ _ _
dition for the CPR to hold exactly, the violation of an exact Ve treat collisions by looking at their net effect, i.e., how
CPRcannot be guaranteei condition (b) is not satisfied. ~ the velocities and positions of the particleznd; involved in

Guided by this observation, the interplay between thdhe collision, are c_hanged frpm their precollisional values
properties of the matrist. (t—t,) and an exact CPR for a Pi- andpj_ to their postcollisional valueg;, andp,. .
dynamical system can be generalized further than what ig’hesez are the only two velocities to change, and because
presented in(b). If there existsany constant nonsingular >i-1Pf is of orderN, the changes im and3 are, according

a closed set of equation follows from E@.1):

a= —2a2+ﬁ,

matrix K satisfyingk?«=| and the condition to Egs.(3.2) and(3.3), of orderN~1. The number of colli-
sions in the whole system is an extensive quantity as well, so
[L(t—tg)]TKL(t—tg)=puK (2.22)  there areO(N) of theseO(1/N) changes in a unit of time.
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The averages of the small changes are not zero, so there ismnere the 33 sub-blocks ofH are given byH[(At)
net effect ofO(1) per unit time to the time derivatives af ~ =h®(At) ¢, ,,,, where

and B, which we will denote bya andb, respectively, ’

Y[ 1—exp(—apAt)] c

a=—2a%+ B+a, hW(At) =1+ yAt— " ,
B=—2aB+b. (3.9 1— e~ oAt
h(At)= —I+12[aoAt(1+e*aoAt)_2
This set of equations has a fixed pointqBy), Which is a0 ag

stable if ¢y>0, so the system reaches this fixed point after
some time. On top of this dynamics, there are fluctuations.
Assuming that the collisions are independent, the central
limit theorem applies, and the fluctuations &¢€1/y/N). For
more detailed analysis, we refer to REI6], where the in-
dependence of the changesdnand g3 is linked to the as-
sumption of molecular chaos. 1

Finally, we note that to maintain a stationary total peculiar h(4)(At)=e_“°m[ I—y| At+ a—[l—ea‘)m]}c] :
kinetic energy in a system with a constantthermostat, this 0 4.3
constant has to be chosen differently for varyipgFor y '
=0, i.e., in equilibrium,aq can be set to zero, and kinetic Due to the complicated form ofi(At), it is easier to
energy is determined by the initial conditions. Near equilib-study its-symplecticity properties in terms of the matfix
rium, i.e., in the linear response regime, the right hand siderhis involves the task of finding a possible matikxsatisfy-
(rhs) of Eq. (3.1) should scale ag?, i.e., > y*. Obviously,  ing the condition
there are higher-order corrections to this behavior which play
a role for larger values of. If, for y+# 0, the initial condition TTK+KT=pK (4.9
is such that the total peculiar kinetic energy is not equal to
the stationary value, that value will be approached in time. such thatk?el. If such a matrixK exists, thenH(At) is

generalizedu-symplectic with that matrix, and

+2e~ A,
h®)(At)=y[1—e !¢,

and

IV. STATUS OF AN APPROXIMATE CPR

t+At
IN THE THERMODYNAMIC LIMIT ,u=exp{ f Bdt’ |. (4.5
t

Based on the discussion in the last paragraph of Sec. Il

and using the results in Sec. lll, we will explore the possi-SinceK andT are constant matrices in the present contgxt,
bility of an approximate CPR for the the SLLOD dynamics js also a constant. Equatidd.4) can be treated as a simple
of hard spheres in the thermodynamic limit, at smatind at  ejgenvalue equation to solve for the eigenvafieand the

low denSity in this section. We will first obtain the desired eigenvectoK_ We find that there exists a matr¢ Satisfying
results for a constant coefficient of frictiag, in the equa-

tions of motion(2.7) and then we will discuss the validity of T'G+GT=—0a,G (4.6

an approximate CPR when the system is under an isokinetic

Gaussian thermostat. To this end, our starting aim is to studgnd the &< 6N matrix G in terms of its 33 sub-blocks, is

the generalizedu-symplectic properties of the matrix(t  given by Gltl=Gl*1=0 and G2 = — G[}l =g, where

—tg) for the dynamics described by E@.7) during a flight

and Eqg.(2.9) during an instantaneous binary collision be- 010

tween theith and thejth s_phere. _ g= 0 ol 4.7
However, as the matrik (t—ty) is constructed from the

H and theM matrices, we will have to study the generalized 01

p-symplectic properties of thel and theM matrices sepa- We note that there may exist other formsgfuch thatG

rately. satisfies Eq(4.6), but Eq.(4.7) is the simplest one that sat-
_ N isfies G2 | and works for ally.
A. Generalized -symplecticity property of H(At) For the purpose of future use, we construct matritgs
The matrix T describing the dynamics oI’ during andHg(At) by settingy=0 in Eq.(4.1) and Eq.(4.3), with-
flights is found from Eq(2.7) to be out settinga =0 (in reality, =0 wheny=0), i.e.,
T 0 | 4.1 T 0 ! 4.8
- ao'yC _aol ' ( ' ) 0~ O _aol ( ' )
From Eq.(4.), it is straightforward to obtain and
H(At)=exd TAt], 4.2 Ho(At)=exd ToAt]. (4.9
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More explicitly, the 3x 3 sub-blocks oHg(At) are given by
(Ho)l¥(Aty=h (A1) 8, ,, andh{)(At) can be found by
putting y=0 in Eq. (4.3 without puttingay=0. The matrix
Ho(At) is now not only generalizeg-symplectic with ma-
trix G, but alsou-symplectic withd, i.e.,

[Ho(A)]TIHy(At) =g~ ®0A1], (4.10

The relevance of this observation will become clear in Sec

IvVC.

We also note that Eq$4.1)—(4.7) hold for any constant
coefficient of friction (not necessarilyrg), which implies,
using Eq.(2.21), that for acollisionlessgas of point particles

PHYSICAL REVIEW E56, 021101 (2002

Once theH and theM matrices are combined together,
following Eg. (2.16), the matrix

L(t—to) =H(Atg)M; j H(Ats_1)- - - M; j H(Ato)
(4.19

is seen to be generalizedsymplecticneitherwith matrix G

nor with matrix J.

" To study the degree of deviation from an exact CPR using
the properties ot (t—tp) in Eq. (4.15 with constant coeffi-
cient of friction «g, we can use eithd =G or K=J. While

the former choice implies that one has to try to estimate the

obeying the SLLOD dynamics with a constant coefficient ofdeviation from an exact CPR using the distribution of the

friction, the CPR is exact, as can be seen in simulatj@8%

B. Generalizedp-symplecticity property of M;;

unit vectorsN” 's and the collision angles for different sets of
binary collisions in the expression &fl, the latter choice
means that one can make the estimate by using the property
of the H matrices in Eq.(4.15. We choose the latter ap-

Unlike theH matrices, theVl; matrices corresponding 10 yroach, because not only is it much easier to calculate the

a binary collision between thigh and thejth sphere do not

typical magnitude of a flight time of a sphere at low densi-

follow from Eq. (2.9) directly. This is due to the fact that (o5 byt also, an estimate of the deviation from the exact
even though the sequences of binary collisions are the sam&pR can be made at smal] as apower series expansidn

on the reference and the adjacent trajectories, the binary col/-' However, the smallness of, which has a dimension of
lision between theth and thejth sphere on these two trajec- jyyerse time, has to be defined in a proper manner. To do so,
tories in the phase space aret simultaneous. One therefore \ye notice that the density of the spheresets a time scale in
needs the dynamics of the tangent vectors for the time int€ke form of the mean flight time,, of an individual sphere,

val, 67, between the two collisions on the reference and the

adjacent trajectories involving thiéh and thejth sphere. To
obtain an expression ®fl;; , we follow the formalism devel-

oped in Refs[11,22, which in turn, is based on the formal-

ism presented in Ref$18] and[20].

and in three dimensions,~nay/v,. Here,n=na3 is the
dimensionless density and, as befarg,anda, are typical
velocity and radius of a sphere. Thus, the actual dimension-

less small parameter corresponding to the shear rate is

The dynamics of tangent vectors at a collision is derived™ ¥ 7o-

in the Appendix. The result is that
o'y =M;; oI (4.1

with

A I O

andR a symmetric matrix given by EqA18). This form of
M;; immediately implies thaM is symplectic, buthot gen-
eralizedu-symplectic with matrixG for u=1, i.e.,

MM =1, (4.13
but

M{;GM;; #G. (4.14

C. Generalizedu-symplecticity property of L(t—ty) and the
origin of an approximate CPR

From Secs. IV A and IV B above, we can finally see that

A naive way to estimate the deviation from an exact CPR
using the latter approach is to use the deviation ofHfiat)
matrices from an exaci-symplecticity [see Eq.(4.15].
Such a deviation is characterized by the matixAt)
=[H(At)]TIH(At) —e “0A!J. The matrixD(At) can easily
be calculated from Eq4.3). However, to estimate the order
of the matrix elements dD(At), an order of estimate of the
quantity At has to be obtained. To this end, we note that
while 79 is the mean flight time for amdividual sphere At
in Eq. (4.15 denotes the mean time for a flight Mfspheres.
This implies thatAt~ 7o /N, as on an average, there &¢&
different binary collisions over a mean flight timg of an
individual sphere. Thus, one would expect that in the ther-
modynamic limit,D(At)— D(0)=0 and one would be led to
conclude that thél matrices in Eq(4.15 are all symplectic.
This in turn would imply, from Eq.(4.15, that L(t—tg)
would be u-symplectic and therefore a gas of hard spheres,
obeying the SLLOD dynamics with a constant coefficient of
friction ag would satisfy an exact CPR in the thermody-
namic limit. We demonstrate below that this simplification is
not correct.

The proper estimate of the deviation from an exact CPR

for a collection of hard spheres obeying the SLLOD equa-has to be made by considerikt{ 7y). To see why this is so,

tions of motion with constant coefficient of frictioa, (a)

the H matrices are generalized-symplectic with matrixG,

but not with matrix J [see Eq(4.6)] and(b) the M matrices
are symplectic buhot generalizedu-symplectic with matrix
G [see Egs(4.13 and(4.149)].

we rewrite the matrix(At) as

N

H(At) =N~ D2e0A T Hi(AL), (4.16
i=1
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with H'(At) defined by Motivated by this, our approach to study the deviation
14 . from an exact CPR for the matrix(t—t,) will be to take

(H)iM (A =6 o[ 6,hM (A +(1- 6 )) Lo(t—to) as the reference matrix. This is reasonable be-
X (Seat 6k,4)e*“0“’2|]. 417 cause, as we will show, . (t—ty) and Ly(t—ty) are very

close for smally, if t—ty=7=0(7). To show this, we first
In effect, H'(At) describes the evolution of the infinitesimal write the matrixLo(t—to) in the same form as Ed4.19),
deviation of the trajectory of thith sphere, while it has an with H'(7)’s replaced byHgy(7;),s. We then relate, fot
almost trivial action on the infinitesimal deviation of the tra- —to=7=0(7), the difference matrix AL(t—ty)=L(t
jectory of thejth spherej#i. It is easy to see that'(At) —to) —Lo(t—tp) to the difference betweerH'(r;) and
has some useful properties Ho( 7).
. . . We now define new matriceSH' andE', such that
HI(Atl)HI(Atz):HI(At1+ Atz),
1 — ! 1
[HI(At|),H](AtJ)]:O and [Hi(At):MiCJ’C]:O AH(T|) H(7'|) H0(7'|),

E'(7)=[Hy(m)] *AH(7), 4.2
it i.#i and j.#i. (4.18 (m)=[Ho(m)] () 423
The properties oH'(At) in Eq. (4.18 allow us to shuffle with
the terms in Eq.(4.15 so as to collect together as many HOM =8 18 h®(r)+ (1= 8 -
H'(At)’s with the samé as possible. The result is that to the (Ho)im (71) = 81n 91,100 (7) + (1= 611)
right of any M, ;_figure anH'«(7f) and anHle(7 ), where X (S 1+ Sy a)€ “07] (4.29

ch and rjcc are the time of flights for thé.th and thejth

spheres before their mutual collisian Consequently, [for the definition ofhg™(7;), see the paragraph preceding

Eq. (4.10]. It is easily seen thaE'(r;) has non-zero ele-
N ments only for entries involving thigh sphere. This, together
L(t—ty)=eN"1/2 ao(t—to){ 11 Hi(t—Ti)] with relations(4.18, implies that

=1

s [E'(7),Hy(r)]=0 for i%#]
- Hie( 7S YHie( 7
><C]:[1 M H'e(75 ) HIe( 7). (419
The product sign in Eq4.19 is to be expanded towards the [Ei(Ti),Micjc]zo if i.#i and j.#i. (4.29
left, i.e. IIS_,A.=As- - -A;. Here,; is the last time that the '
ith particle collided(or t, if it did not collide). From Eq. The matrix E'(7;) can be easily calculated from Egs.

(4.19, it is now clear that the proper estimate for the devia-(4.23. With the aid of Eqs(4.3 and(4.9), we now express
tion from an exact CPR has to be made by considering ththe matrix AH!(7,) defined in Eq.(4.23 as AH|{(7)
properties oH! (), with 7;=O( 7o), andnot from the prop-  =Ah'l¥(7) 6, where
erties ofH'(7,/N).

We also notice that if one uses the correspondiggna- AR 1) = ~ Y 1-exp(—aoTi) ]
trices instead of thél matrices in Eq(4.15 to construct an (mi)=|y7i o C,
analogous matrix o(t—t), defined by

Lo(t—to) =Ho(Atg )M j Ho(Ats—1)- - - M j Ho(Atp), Ahi<2)(Ti):lz[aori(1+e*“ofi)—2+ 2e~“0T]c,
(4.20 )

then the matrix_y(t—tg) is u-symplectic, because of Egs. AR G)(7)=y[1—e @07i]c,
(4.10 and (4.13. As a consequence, the logarithms of the
eigenvalues of o(t—t,), defined by and

Lo(t—to)=[Lo(t—tg)] "Lo(t—to), 4.2 . 1

o(t—to) =[Lo(t—to)] Lo(t—to) (4.21) AN = =y rt Lp1—ene. (@26

pair exactly. If we arrange the corresponding Lyapunov spec- 0
trum

The crucial point is that sincey= y7, i.e., the dissipation is
quadratic in the shear fieldyH'(7;) in Eq. (4.26 can be

— i [ (+_ 1/2(t—tg)
Ao Jm[LO(t to)] (4.22 expanded in powers of to obtain
2
in the decreasing order of magnitudexd® A\, ... A Q)| : YT
thenh {0+ X2 .= - ao. " AN =5, (.29
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Ah'@)(7)=

Ahi(S)(Ti):?’(%oTi

at themost leading orderThereafter, having combined Eqgs.
(4.23, (4.26) and (4.27), all elements ofE'(7;) are seen to
have a prefactor of ordey®. This makesE'(r;) small com-
pared to 1. Hence, to first ordeAL(7)=L(7)—Ly(7) can
be found from Eq(4.19 by keeping only the terms linear in

E'(7),

N
AL(r)=eN"12 “oT[H H‘O(THO—E)}
=1

X

S (o}
i i
+cgl al;[l MaHg( Tiaa)HOa( T?a)

C!

3!

S

N
j T ic ic
121 EJ(T+t0—t]~)C1:[1 McHg (75 ) HEE(75)

S

7“07'3
!

and Ah'®(7)=

X[Ele(7f ) +E'e( Ticc)]bzlll MoH2( Tibb)Hgb( T}Jb)) .

We now shuffle all theE'c matrices to the right, by succes-
sively exchanging the order ofE'¢ and the next

MbHIOb(Tibb) Héb(TFb) to its right. These will commute very

(4.28

PHYSICAL REVIEW E56, 021101 (2002

Sincer is of the order of a flight time of a sphergis of the
order ofN, but a typical sphere will have suffered only a few
[a few here is roughlyO(1)] collisions. Consider a typical
term in the sum ovet. TheMHyH, terms in the products are
from collisions that involve the th or thej.th sphere, or
spheres that were involved in collisions with théh or j.th
sphere. The number dfiHyH, will thus also be ofO(1).

The matrixE'e has nonzero elements only for the entries
associated with thei .th sphere. The multiplication by
MHgH, yields more nonzero entries associated with other
spheres, whose number however is@f1). Therefore, in
the whole sum o6=0O(N) terms in Eq.(4.30 will yield for
typical entries a result of order oit@ndnot of orderN as the
sum overs<N suggests Sinceall elements of th&E matri-

ces are proportional tgy? as can be seen from Eqg.23),
(4.26), and(4.27), we conclude fot—ty= 7= 0O(7p) that

L(7)=Lo(n[I+7°B], (4.30

where the matri»8 is of order 1 iny and order 1 irN. Note

that B contains higher powers of as well. Because it in-
volvesc and contributions from collisions between spheres,
B is not proportional to the identitly so we cannot regard it
as a simple scalar factdin which case the exact conjugate
pairing would be easy to obtain agaiEquation(4.32) im-
plies

AL(n)=L(n)—Lo(n =B Lo(7)+Lo(7)B]

+759BTL,(7)B. (4.32

often, because most collisions in the sequence will involve
other spheres than thegth one. If they do not commute, we We can now see, from Eq&4.31) and(4.32 that the differ-

write

E'eMpHG (75 He'(7],) = MoHG (71 ) H (7))

X[MpH( 7 ) HP (72 )]

X E'MHP( ) HP (7).

From that point on,

“[MyHy

bH{)b]—lEiMbHiongb,"

and find, symbolically,

S

[Lo(7)] *AL(D)= 2,

c=1

[H (MHOHO)l}

(4.29

with
and shuffle that to the right.
Repeating this, we end up withy(7) on the left side again,

X[EjC(TjCC)+Ei°(TiCC)][H MHOHO]

N
+_Zl []’[ (MHOHO)l] EJ(T+tO—T,-)
=

X

1T MHOHOJ.

(4.30

ences betweeh(7) andLq(7), and betweeil (7) andL(7)
are small, as anticipated in Sec. IV C, by a relative orger
Therefore the logarithm of the eigenvalues lofr) and
Lo(7) also differ by a term of ordey® in an absolute sense.
If we now divide the logarithms of these eigenvalues by the
time 7, we see that the finite timé&or time 7) Lyapunov
exponents, calculated frofry and fromL (which we denote
as\(9(7) and\(7) respectively, foi=1,2, ... &) differ
by a termO(3°/7)=0(y7?). Using the fact thah(?(7)’s
satisfy the conjugate pairing rul®;(7)’s too, will satisfy it
up to O(yy?). From the condition that

6N 6N

-21 )\i(O)(T):Zl Ai(7)=—3Nao, (4.33

[which can be easily verified from Eqgt.3) and(4.12], we
see that on average over the pairs, the deviation from CPR is
Zero.

We make one more observation at this stage. The
Lyapunov exponent&ven the finite time ongsre invariant
under y— — v, so in a power series expansion of the indi-

vidual Lyapunov exponents ify [21], the odd powers van-
ish. We therefore conclude that the logarithm of the eigen-
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values ofL(7) andLy(7) must differ by a term of ordey?,  infinitesimal phase space elemefif, we then showed that
and hence conjugate pairing ®f( 7)’s will be valid up to the  the CPR is expected to be violated, at the mosQ@g*) for
correction of the formyy?3. constant coefficient of frictiory. The source of the CPR

—)], we proceed in the following way. Notice that the clearly seen that CPR would have been exact in the absence

of this term. Finally, we extended that result to the case when
he coefficient of friction represents an isokinetic Gaussian
hermostat. Note that to obtain the deviations from CPR for

matricesL(t—t,) and Ly(t—t,) are positive definite and
symmetric. This allows us to express the two matrices in th

form of Lo(t—to) =exp{o) and L(t—to)=exp(A), where  ihq constaniy, thermostatthe number of particles did not
for large (—1to), both the eigenvalues &, and A must  matter, so for that case the result holds for any number of
behave~(t—to). In these terms, the difference between thepayticles, but with an isokinetic Gaussian thermostat between
Lyapunov exponents fdr(t—to) andLo(t—to) is related to  collisions, we need to taki to infinity to make the connec-
A—A,. Since the difference between(t—ty) and Ly(t  tion to the constani, thermostat.

—t,) has an explicit prefactor of®, so will A—A,. Using In addition, as mentioned in the introduction of this paper,
the symmetry argument that the Lyapunov exponents have {he condition that the mass of each sphere be un'|ty, is not
be even functions of/, we obtain necessary. If we assume that the mass oftthephere isn;,

then one can obtain the same equations of motion, @98,
(2.2), and (2.7—(2.9) in terms of the primed quantities de-
.(4.34; fined by r/=Jmr, v/=ymyv, p/=p/Jym;, R’

=(r{.rh, o FR), V= (Vi V5, ... vy) andN/;, defined as

)\i+)\6N_i+1=—a0+O('y;/3), |:1,,8\l

To explicitly extend the formalism developed in E¢6.19—

(4.32 to larget—ty and thereby obtain a relation between .~ m; m
A’s andA(?'s, we need to concatenate a lotldfr)'s. These Nij =1 a1, mtm ZFAY m
do not commute with each other, nor do they commute with . .
B’s in general. This prevents an explicit demonstration of(|=1,2, ... N). Itis then straightforward, albeit lengthy and
how the deviation is built up. For the largest and the mosiaborious, to see that our entire analysis goes through in
negative Lyapunov exponent, it has been possible to shoverms of these primed variables, once we Usén Eq. (A14)

that they pair to— a, plus corrections oD(y7°) by means  with
of a kinetic theory approacf22,23, based on the indepen-

dence of subsequent collisions of a sphere. One expects that U =Uj=[m+m] 2, (5.9

in the subsequent time intervals ©f 7,), the L(7) matrices

are not qualitatively much different from each other. There- ,om \/ﬁj ,

fore, we expect the coefficient of tH@(yy°) term in Eq. Uii:HUn: N HUU' (5.2
(4.34) to be of the same order as that for a flight time

=0(7o), i.e., of the order oB, which isO(1). However, we must note that even though the analysis pre-

We now return to the discussion of an approximate CPRsented in Sec. IV is not affected when the masses and the
for the SLLOD equations of motion with an isokinetic radii of the spheres are not necessarily the same, one should
Gaussian thermostat in between collisions. As discussed ifot allow extreme variations in masses and the radii of the
Sec. lll, in the nonequilibrium steady state and in the therspheres. For large variations of the masses, the system may
modynamic limit, the coefficient of dynamical friction repre- phase separate into phases in which the mean flight times are
senting the isokinetic Gaussian thermostat for the SLLOD4ifferent, which will invalidate the use of the Boltzmann
dynamics fluctuates with IN fluctuations around the fixed equation in Ref[16] (the Boltzmann equation has been used
value ap. We would therefore expect that the Lyapunovto show the approach af towards the constant value, in
spectrum for the SLLOD dynamics with an isokinetic Gauss-Ref. [16]). Furthermore, the use of a typical mean free time
ian thermostat is given by that df(t—ty) plus terms of in Sec. IV B will not be possible for large variations in the
O(1/yN). Consequently, the approximate conjugate pairingradii of the spheres. Our analysis in this paper, therefore,
of Eq. (4.34 can be extended to this thermostat once weholds for somewhat limited variations of the masses and the
neglect theO(1/y/N) terms in the sum of the corresponding radii of the spheres.

N andhgy—i+1- Another possible generalization of our analysis can be
carried out for the case when the gas particles interact with
V. DISCUSSION e_ach other _by means of a short-ranged, repulsive, interpar-

ticle potential (an attractive potential may cause bound

In this paper, we started with a collection &f hard state$ for a constant multiplier thermostat. The dynamics of
spheres, each with unit mass and arbitrary radius. Next, wthe particles can be again decomposed into flights and “col-
argued how the coefficient of friction representing the iso-lisions” at low density. While the transformation of the in-
kinetic Gaussian thermostat in between collisions, fluctuatefinitesimal phase space volume element over flights will
around a fixed valuey with 1/\N fluctuations in the NESS. again be determined by th¢ matrices as in Eqs4.2)—(4.3)
Using the properties of the transformation matrices for theland thereby have the same properties as ghoke corre-
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spondingM;; matrices will not necessarily have a similar
form and properties as presented in E@s12 and (4.13.

For a given average value of the peculiar kinetic energy, the
constant multiplier thermostat has to be chosen carefséyg

the last paragraph of Sec.)llIHaving denoted the constant
coefficient of friction again byr,, whereayx y?, it is easy

to see that the resulting matrib; can be decomposed into a
sum of two matricesM{” and AM;; , whereM(” is exactly

w symplectic butAM;; is not. If the termayyCR in Eq. Adjacent
(2.7) (which is the cause for the violations of CPR in the first trajectory
place had been absent, thevl; would have been sym-

plectic [24] and AM;; would have been zero, but with Eq.

(2.7 in its present form, it is easily seen thAM;; is «<ay

~;/3 and the proportionality constant depends on the ratio of A
the time the two colliding particles spend in contact with -
each other to the time of a flight. This ratio is very small at Reference trajectory

low density of the gas and therefore the elementANdf; are

small in comparison Withi(jO). Since theH matrices have a FIG. 1. A schematic diagram of the collision dynamics on the
similar property, one can repeat the analysis of this paper fdieference and the adjacent trajectories.

such interparticle short-range repulsive potentials usigg _

and M as the reference matrices and arrive at the samgYWO),” and by a grant from the Natural Sciences and En-

conclusion as Eq4.34). gineering Research Council of Canada.
Moreover, on the basis of the fact that at low densities and
short-ranged repulsive interparticle potentiélsat do not APPENDIX

give rise to bound statgsthe constant multiplier thermostat
and an isokinetic Gaussian thermostat are equivalent in the In this appendix, we will derive the transformatith; of
thermodynamic limi{16], one would expect that under such tangent vectors at a collision. The essential element is that
conditions, the Lyapunov exponent spectrum for the Gausghe collision does not happen at the same time on reference
ian thermostat would be practically the same as that of th@nd on the adjacent trajectory. To understand the origin of
corresponding constant multiplier thermostat, where the corthis time lag between the binary collisions between ittie
stant multiplier is once again proportional 43. Therefore, and thejth sphere on the reference and the adjacent trajec-
in view of the above discussion, we can also exp@¢}?) tories, in Fig. 1, we have depicted an exaggerated schematic
deviations from the CPR for a Gaussian thermostattedicture of the collisions taking place in theNédimensional
SLLOD equation of motion in the thermodynamic limit, Phase space on the reference and the adjacent trajectories at
where the particles interact with each other by means of 80intsA andC, respectively. The pointB andD show the
short-ranged repulsive potential. correspondlng Ppositions of the _adjacent.a.nd the reference
Finally, we note here that the verification of our theory by Points, respectively, when the binary collisions/aand C
means of computer simulation remains a challenge. Th&re taking place. Thus, the precollisional separation between

work for simulations is in progress at present, although outhe reference and the adjacent points’)isqﬂﬂ‘, , While the

preliminary experience suggests that to retrieveyiyi@scal-  postcollisional separation is DEST, . Using that|r; —r]

ing of the deviation of the sum of the pairs of Lyapunov gng |rj+8r;+V;67—1;— 6r;—v; 87| both have to equak,

exponents from- aq is not an easy task. +a;, the time lagd~ between the two collisions & andC,
therefore, can be easily expressed as
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(A1)

R_

- (A2)
V_—2(V_-NK;
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Jd .
oT, _9Q s I, or,

ar'_ (A3)

where, ST'* is the infinitesimal phase space separation be-

tween the two trajectories @t andC,

ST*=6T_ +I'_ 67, (A4)

andI'. describes the equations of motion, E8.7), right
after (before the collision atA, i.e.,

. R. V.
= Vi - ao)’CR:_aoV:] (A%
Having calculated the quantigQ/JI'_ from Eq. (A2),
50 [ 0
o | oy | Mg m Mok Ry |
R TR we
(A6)

where each entry of the matrix on the rhs of E46) is a
3N X 3N matrix, the expressions fafR, and 6V, can be
obtained from Eq(A3) as

SR, =8R_—2(6R_-N;j)N;; (A7)

ij o
and
SV =A-SR* +(1-2N;N;j ) oV _ + (1- 2N;; Ny )
X[agyCR-_~agV_]o67—[agyCR: —agV.]6T,
(A8)
where
N N

and SR* =(8R_+V_4§7). At this point, we use Eq(2.9)
and obtain
(I—ZN”N”—)[&O)/CR,—aOV,]ér—[aoyCR+—a0V+]5T

= —2ayy(N;;-CR_)N;; 7. (A9)

Following Appendix B of[11], the termA- SR* can be ex-

pressed as
A-SR* = —2[(V_- 8Nij)N;; +(V_-N;)SN;; 1,
(A10)
where
1
5N|]:E(0,0, e ,5nij y ey 6nij y v ,O),
(A11)
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(ai+ aj)(ﬁij + gﬁij)

FIG. 2. Collision between thigh and thejth sphere. Thick-lined
spheres are on the reference trajectory, whereas the thin-lined
spheres are on the adjacent trajectory.

satisfyingﬁij -on;j=0. This orthogonality condition between

n; and &n; also implies thatN;;- 5N; =0. To obtain an
expression fown;; , we need to take a look at Figs. 2 and 3.
Figure 2 describes, in the laboratory frame, the binary colli-
sion process between ti#h and thejth sphere on the refer-
ence and adjacent trajectories; the thick-lined spheres are on
the reference trajectory whereas the thin-lined spheres are on
the adjacent trajectory. Figure 3 describes the same binary
collision process in the reference frame of ftie sphere
(with centerC). In Fig. 2, the thick-linedjth sphere(with
centerD) on the left depicts the collision situation on the
reference trajectory and the thin-lingth sphergwith center

E) on the left depicts the collision situation on the adjacent

trajectory. Clearly, in Fig. 3, the infinitesimal vector DE
given by

orfi=06r_—or_+(vj_—Vv;_)dr, (A12)

and since the lengths of both the lin€H and CE are a;
+a; (a; anda; are the radii of théth and thejth sphere,
respectively, we have

8r, - 3, + (5 - )8t

A\
(a;+a)n;

FIG. 3. Same collisions as in Fig. 2, in the reference frame of
theith sphere.
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Let us define a BIX3N matrix U composed ofNXN

blocks of 3x3 matrices, such that, in terms of the block

indices the only nonzero entries bfare

Uii:_Uij:_Uji:Ujj:_|1 (A14)

wherel is the 3X3 unit matrix. One can now write, using
Egs.(A11)—(A14) and Eq.(Al) that

1 .
ONjj=—=——[U-6R_+U-I'_o7
! \/E(aﬁraj)[ ]

1

- _(u-v,)lilij
_\/E(ai+aj)

V_-N

.SR_. (A15)

i]

From Egs.(A10) and Eq.(A15), we finally have

PHYSICAL REVIEW E66, 021101 (2002

N
T ata

(U-VON; +N;;(U- VL)

R vous =0 Veg R
TR V—'Nij ij Nij

-O0R_

= (1-2N;N;))W- 6R_, (A16)

whereW is a 3N X 3N symmetric matrix. Finally, using Egs.
(A1), (A7)—(A9), and(A16), the expression foM;; can be
obtained as

A I 0
where
R=W-2 N”'CR‘N N (A18)
=W-2apy——=—N;;iN;; .
oY V—'Nij ij Nij
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