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Pairing of Lyapunov exponents for a hard-sphere gas under shear in the thermodynamic limit
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We consider a dilute gas of hard spheres under shear. We use one of the predominant models to study this
system, namely, the so-called SLLOD equations of motion, with an isokinetic Gaussian thermostat in between
collisions, to get a stationary total peculiar kinetic energy. Based on the previously obtained result that in the
nonequilibrium steady state and in the case the number of particlesN becomes large, the coefficient of
dynamical friction representing the isokinetic Gaussian thermostat for the SLLOD dynamics fluctuates with
1/AN fluctuations around a fixed value, we show on analytical grounds that for a hard sphere gas at small shear
rate and with a large number of spheres, the conjugate pairing of the Lyapunov exponents is expected to be
violated at the fourth power of the constant shear rate in the bulk.
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I. INTRODUCTION

Nonequilibrium molecular dynamics~NEMD! simula-
tions of Navier-Stokes equations have been used to study
shear viscosity properties of fluids for a long time. To stu
the coefficient of shear viscosity in Navier-Stokes equatio
a carefully chosen periodic boundary condition in NEM
simulations is enough to drive the system out of equilibriu
Based on these ideas, in the early days of the developme
this subject, an algorithm was constructed from simple Ne
tonian equations of motion using periodic boundary con
tions, the so-called Lees-Edwards boundary conditions@1#.
However, it was soon realized that in the absence of an
plicit dependence on the shear field in this algorithm, o
could not make an appropriate connection with the Gre
Kubo relations, and therefore, it was difficult to deal with t
subject from a theoretical point of view. As a remedy, so
other algorithm with an explicit dependence on the sh
field was called for, and the DOLLS and the SLLOD alg
rithms were born.

The main idea behind the DOLLS and the SLLOD alg
rithm is an explicit dependence on the shear field,g. The
DOLLS algorithm was implemented first@2#. The SLLOD
equations of motion were proposed soon after@3#, and are
now preferred because they are equivalent to the boun
driven method@4#. Both algorithms have to be supplement
by a thermostat, which continuously removes the ene
generated due to the work done on the system by the s
field such that a nonequilibrium steady state~NESS!, homo-
geneous in space, can be reached.

In this paper, we will look at the SLLOD equations o
motion for a gas of hard spheres from the point of view
dynamical systems. The Lyapunov exponents of a system
particles, obeying the SLLOD equations of motion and m
tually interacting by means of WCA potential with an isok
netic Gaussian thermostat, was first studied by Morriss@5#.
The study showed that the shear viscosity can be obta
from the sum of all the Lyapunov exponents. The simulat
results in Ref.@5# also indicated that once the Lyapuno
exponents are arranged in ascending order of magnitude
1063-651X/2002/66~2!/021101~12!/$20.00 66 0211
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sum of the largest and the smallest, the sum of the sec
largest and the second smallest, and so on, were the s
The phenomenon of such pairing of the Lyapunov expone
is known as the conjugate pairing rule, or the CPR. Sinc
is, in general, difficult to calculate all the individua
Lyapunov exponents of a system, an extensive theore
study soon ensued to understand the CPR for the Lyapu
exponents of systems obeying the SLLOD equations of m
tion. Evans and co-workers investigated this point@6# to con-
clude that the Lyapunov exponents pair exactly for gene
interparticle potentials andall g. In a follow-up work, Sar-
man et al. @7# carried out simulation studies in support
Ref. @6#.

In the next few years, the connection between the dyna
cal systems theory and statistical mechanics saw a surg
interest. Some situations were found, where it was poss
to prove that the CPR is satisfied exactly@8–11#. The status
of the CPR for the SLLOD and the DOLLS dynamics w
revisited. For a system of particles obeying the SLLOD a
the DOLLS dynamics with a WCA interparticle potential an
arbitraryg, CPR was reported to be violated on the basis
simulation results@12,13#, but recently it was shown that thi
claim is based on an erroneous analysis of the Lyapu
spectrum@14#. However, for these two systems, no attem
of a theoreticalunderstanding about the nature of an appro
mate CPR has been carried out so far. In this paper,
address and attempt to clarify these issues. We find that f
dilute gas of hard spheres obeying the SLLOD dynam
where the masses and the radii of the spheres are not n
sarily the same, and the total peculiar kinetic energy is k
constant by applying the iso-kinetic Gaussian thermosta
between collisions, the CPR is violated at the most atO(g4),
for smallg, in the thermodynamic limit@15#. Our analysis is
based on the key idea that the coefficient of friction rep
senting the isokinetic Gaussian thermostat for a dilute ga
particles mutually interacting by means of a short-rang
potential and obeying the SLLOD dynamics with a sm
shear rate, in the NESS, reaches a fixed value in the ther
dynamic limit, with 1/AN fluctuations, whereN is the num-
ber of particles@16#.
©2002 The American Physical Society01-1
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The structure of the paper is the following: in Sec. II, w
describe equations of motion for the SLLOD dynamics, d
fine the Lyapunov exponents, and discuss the sufficient c
ditions for an exact CPR. In Sec. III, we demonstrate h
the coefficient of friction representing the isokinetic Gau
ian thermostat is expected to reach a fixed value at the t
modynamic limit, with 1/AN fluctuations. In Sec. IV, we
present the explicit calculations and discuss the status o
approximate CPR. To make the calculations in Secs. II–
simple, we assume that each of the gas particles has a
mass. Finally in Sec. V, we end this paper with discussi
on possible generalizations, including the generalization
the case when the masses of the gas particles are arbitr

II. THE SLLOD EQUATIONS OF MOTION
FROM A VIEWPOINT OF DYNAMICAL SYSTEMS

A. Equations of motion

The SLLOD equations of motion describe the dynam
of a collection ofN particles constituting a fluid with a mac
roscopic velocity fieldu5gyx̂ ~i.e., the gradient of thex
component of the macroscopic fluid velocityu in y direction
is g). For simplicity, each gas particle is assumed to hav
unit mass. The specific form of the SLLOD equations
motion for the i th particle, in terms of its positionr i and
peculiar momentumpi , is given by

ṙ i5pi1gyi x̂, ṗi5Fi2gpiyx̂2api , ~2.1!

where Fi is the force on thei th particle due to the othe
particles in the system. The peculiar velocity of a particle
defined as its velocity with respect to the velocity of the flo
at its location and the peculiar momentum of a particle is
product of its mass and its peculiar velocity. The value ofa,
the coefficient of friction representing the isokinetic Gau
ian thermostat in Eq.~2.1!, is chosen such that the total p
culiar kinetic energy of the system,( i pi

2/2, is a constant of
motion, i.e.,

a5

(
i 51

N

~Fi•pi2gpixpiy!

(
i 51

N

pi
2

. ~2.2!

The SLLOD equations of motion, without the dissipati
term 2api , cannot be derived from a Hamiltonian~unlike
the DOLLS equations of motion!.

We will use the equations of motion exclusively in term
of the particles’ positionsr i and laboratory velocityvi . This
introduces the change of variable frompi to vi5pi1gyi x̂ in
Eq. ~2.1!, which can then be written as

ṙ i5vi , v̇i5Fi1agyi x̂2avi . ~2.3!

In the present context, the gas particles are hard sph
of arbitrary radii. This reduces the dynamics of the gas p
ticles to an alternating sequence of flight segments and
stantaneous binary collisions. During a flight, the dynam
02110
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of the gas particles is therefore described by Eqs.~2.2! and
~2.3! with Fi50. As far as the dynamics in collisions i
concerned, it is possible to derive the limiting behavior of t
isokinetic Gaussian thermostat asFi→` @17#, but this leads
to rather complicated collision rules. For the purpose of s
plicity, in this paper, we choose to apply the isokinetic th
mostat onlyin between collisions.Thus, at an instantaneou
collision between the i th and the j th sphere (i , j
51,2, . . . ,N; i 5” j ), the postcollisional positions and labora
tory momenta (1 subscripts! are related to their precolli-
sional values (2 subscripts! by

r i 15r i 2 , r j 15r j 2 , ~2.4!

vi 15vi 22$~vi 22vj 2!•n̂i j %n̂i j , ~2.5!

and

vj 15vj 21$~vi 22vj 2!•n̂i j %n̂i j , ~2.6!

while the positions and the velocities of the rest of t
spheres remain unchanged. Here,n̂i j is the unit vector along
the line joining the center of thei th sphere to thej th sphere
at the instant of collision. Note that although in any partic
lar collision, the peculiar kinetic energy changes over a c
lision, these changes are random, both in magnitude
sign, due to the randomness of the collision parameters,
hence it is quite likely that the system would reach a ste
state, where the average change of peculiar kinetic en
would be zero.

To study the SLLOD dynamics as a dynamical system
three dimensions~the dimensionality does not affect ou
analysis!, we form the 3N-dimensional vectors R
5(r1 ,r2 , . . . ,rN), V5(v1 ,v2 , . . . ,vN) and N̂i j , whosel th
entry is given byN̂i j

l 5(d l ,i2d l , j )n̂i j /A2 (l 51,2, . . . ,N).
Using these new variables, we write the SLLOD equations
motion in the (r i ,vi) coordinates ofN hard spheres during a
flight, Eq. ~2.3!, in a compact form

Ṙ5V, V̇5agCR2aV. ~2.7!

Here, C is a 3N33N matrix with N3N entries, each of
which is a 333 matrix. In terms of the entry index (l ,m), in
the xyz basis,Clm5cd lm ( l ,m51,2, . . . ,N) and

c5 x̂ŷ5F 0 1 0

0 0 0

0 0 0
G . ~2.8!

At a collision between thei th and thej th sphere, the equa
tions of motion are given by@11#

R15R2 , V15V222~V2•N̂i j !N̂i j . ~2.9!

In our analysis hereafter, except for Sec. III, we will use on
Eqs.~2.7! and ~2.9! to describe the dynamics.

At this point, we introduce the following notations.
phase space point can be denoted asG5(R,V). A linear
transformation on phase space can be given as a 6N36N
1-2
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matrix. Any such matrixP can be split in terms of four 3N
33N sub-blocks, for which we use the notationP[1] , P[2] ,
P[3] , andP[4] , such that

P5FP[1] P[2]

P[3] P[4] G . ~2.10!

Each sub-blockP[ i ] ( i 51, . . . ,4) itself can be divided in
333 sub-blocks again, where each sub-block can be ide
fied by two indicesl andm, l along the horizontal andm
along the vertical direction (l ,m51,2, . . . ,N). Such a sub-
block is denoted byPlm

[ i ] .

B. Lyapunov exponents for hard-sphere systems

To calculate the Lyapunov exponents for hard-sphere
tems, let us assume that the system starts at timet0 at a
phase-space locationG(t0)[„R(t0),V(t0)…. Under time evo-
lution, G(t) follows a trajectory in the 6N-dimensional phase
space, which we call the ‘‘reference trajectory.’’ The set ofN
hard spheres would suffer a sequence of binary collisions
this trajectory. We also consider an infinitesimally displac
trajectory in the phase space, which starts at the same
t0, but at G8(t0)5G(t0)1dG(t0). Under time evolution,
G8(t) follows another trajectory, always staying infinites
mally close to the reference trajectory. This trajectory we c
the ‘‘adjacent trajectory.’’ We also assume that the set oN
hard spheres on the reference and the adjacent traject
suffer thesamesequence of binary collisions. We denote t
time evolution of the infinitesimal 6N-dimensionaltangent
vector dG(t) over time (t2t0) by the 6N36N matrix L(t
2t0), i.e.,

dG~ t !5L~ t2t0!dG~ t0!. ~2.11!

The Lyapunov exponents are the possible exponential gro

rates in time ofuLĜu for different directions of unit vectors

Ĝ. We have to define the norm in an appropriate way. M
ing the time it takes for a sphere with a typical velocityv0 to
cross the distance of a typical radius of a spherea0 our unit
of time ~i.e., a0 /v0 is set to 1) solves the problem that th

components ofĜ have different dimensions. For the inn
product between two tangent vectorsdG(1)5(dR(1),dV(1))
anddG(2)5(dR(2),dV(2)) we use

^dG(1)udG(2)&5(
i 51

N

~dr i
(1)
•dr i

(2)1dvi
(1)
•dvi

(2)!.

The norm is now defined asudGu5A^dGudG&.
The Lyapunov exponents are the logarithms of the eig

values of the matrixL, defined by

L5 lim
t→`

@ L̃~ t2t0!#1/[2(t2t0)] , ~2.12!
02110
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where L̃(t2t0)5@L(t2t0)#TL(t2t0). The corresponding
directions for the exponential expansion and contraction
the phase space (R,V) are obtained from the eigenvectors
L̃(t2t0).

The dynamics ofdG(t) in Eq. ~2.11!, for a gas of hard
spheres, can be decomposed into an alternating sequen
flights and instantaneous binary collisions. We denote
transformation ofdG(t) over a flight segment betweent and
t1Dt by H(Dt) such that

dG~ t1Dt !5H~Dt !dG~ t ! with H~0!5I. ~2.13!

Explicitly, H(Dt) is obtained from

ḋG~ t !5T~ t !dG~ t ! ~2.14!

as

H~Dt !5expTF E
t

t1Dt

dt8T~ t8!G , ~2.15!

where the subscriptT indicates time ordering. Notice tha
H(Dt) in a general system will depend on timet as well, but
we have suppressed that in our notation. If we now den
the transformation ofdG(t) over an instantaneous binar
collision ~say, between thei th and the j th sphere! by the
matrix Mi j , we can express the matrixL(t2t0) in terms of
theH andMi j matrices in the following way: if the dynamic
involves flight segments separated bys instantaneous binary
collisions att1 ,t2 , . . . ,ts such thatt0,t1,t2,•••,ts,t,
then

L~ t2t0!5H~Dts!Mi sj s
H~Dts21!•••Mi 1 j 1

H~Dt0!.
~2.16!

Here,Dt i5t i 112t i for i 51,2, . . . ,(s21) andDts5t2ts .

C. The sufficient conditions for an exact CPR

If the CPR is exactly satisfied for a dynamical system,
sum of the conjugate pairs of the Lyapunov exponents
some constantc, i.e., if l i is a Lyapunov exponent of this
system, thenc2l i is also a Lyapunov exponent. The pro
of a possible conjugate pairing rule will follow from th
properties of the matrixL(t2t0). However, to understand
the interplay between the properties of the matrixL(t2t0)
and an exact CPR in full generality, below we first look
the property ofL(t2t0) that has been used in various cas
to prove CPR.

~a! If the matrixL(t2t0) is symplectic, i.e.,L(t2t0) sat-
isfies the symplectic condition

@L~ t2t0!#TJL ~ t2t0!5J,

with J as the usual symplectic matrix, then

L̃~ t2t0!JL̃ ~ t2t0!5J. ~2.17!

Equation~2.17! can be used to show that

Det@ L̃~ t2t0!2L̃I#50
1-3
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~with I the identity matrix! implies

DetF L̃~ t2t0!2
1

L̃
IG50. ~2.18!

This means that ifL̃ is an eigenvalue ofL̃(t2t0) then so is
L̃21. Since the Lyapunov exponents are the logarithms of
eigenvalues of the matrixL, defined in Eq.~2.12!, it is easy
to see thatc50. All Hamiltonian systems fall in this class

~b! In the existing literature@8–11#, the concept of the
symplectic condition defined above, has been generalize
the so-called ‘‘m-symplectic condition’’ and applied to ther
mostatted systems where an isokinetic Gaussian therm
keeps the totallaboratory kinetic energy constant and th
external force on the constituent particles of the system
dependent only on the positions of the particles. For th
systems, in an appropriate reduced phase space characte
by all the nonzero Lyapunov exponents, the matrixL(t
2t0) satisfies thism-symplectic condition, which means tha
there exists atime-dependent positive scalarquantitym, such
that @L(t2t0)#TJL (t2t0)5mJ. This implies that

L̃~ t2t0!JL̃ ~ t2t0!5m2J, ~2.19!

which can be used to derive that if

Det@ L̃~ t2t0!2L̃I#50

then also

DetF L̃~ t2t0!2
m2

L̃
IG50, ~2.20!

for an eigenvalueL̃ of the matrixL̃(t2t0). This means that
if L̃ is an eigenvalue ofL̃(t2t0) then so ism2L̃21. In that
case, one finds from Eq.~2.12! that c5 limt→`(ln m)/(t2t0).
If the system is ergodic, then this long time average forc can
be equated to a NESS average. Notice that condition~a! is
obtained as a special case of condition~b!, namely, when
m51.

Returning momentarily to the SLLOD dynamics, we o
serve that the formalism developed in Refs.@8–11# fails
here. The primary reason is associated with the fact that
total peculiarkinetic energy is held constant for the SLLO
dynamics, as opposed to the totallaboratory kinetic energy
in Refs. @8–11#. One however needs to interpret the sta
ment regarding the connection between the violation of c
dition ~b! and the nonexactness of the CPR with care.
virtue of the fact that condition~b! above is a sufficient con
dition for the CPR to hold exactly, the violation of an exa
CPRcannot be guaranteedif condition ~b! is not satisfied.

Guided by this observation, the interplay between
properties of the matrixL(t2t0) and an exact CPR for a
dynamical system can be generalized further than wha
presented in~b!. If there existsany constant nonsingula
matrix K satisfyingK2}I and the condition

@L~ t2t0!#TKL ~ t2t0!5mK ~2.21!
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is satisfied with a time-dependent scalar quantitym, then Eq.
~2.20! can be shown to hold for an eigenvalueL̃ of the ma-
trix L̃(t2t0), implying that the CPR is exactly satisfied fo
such a dynamical system@19#. In analogy with the nomen-
clature presented in~b!, we call Eq.~2.21! a ‘‘generalized
m-symplectic condition’’ with matrixK. We emphasize tha
the necessary condition for an exact CPR to hold for a
namical system is not known.

In view of Eq. ~2.21!, thus, one should look for such
matrix K to prove an exact CPR. Instead, we look at it fro
a different angle, namely, that we would like to understa
how the SLLOD dynamics ofN hard spheres with an isoki
netic Gaussian thermostat deviates from an exact CPR.

III. BEHAVIOR OF a IN THE THERMODYNAMIC LIMIT

Our procedure to study the deviations from CPR beg
with the following observation: in the thermodynamic limi
for the SLLOD dynamics with short-range interparticle p
tentials at low density of spheres and at smallg, the behavior
of a simplifies to a great extent. After some transient tim
the system reaches the NESS, and the coefficient of fric
a fluctuates with 1/AN fluctuations around a fixed valuea0
@16#. For not too large fluctuations, the distribution functio
for a can also be shown to be approximately Gaussian. Th
to calculate the Lyapunov exponents for largeN at low den-
sity of spheres and at smallg, to which we confine ourselve
henceforth, a can be replaced bya0 in Eq. ~2.7!. We will
now briefly present the gist of the derivation in Ref.@16#,
applied to hard spheres.

For a hard-sphere system, the force term in Eqs.~2.1! and
~2.2! is zero during a flight. Thus, for a flight, we have

a52gF(
i 51

N

pi
2G21

(
i 51

N

pixpiy . ~3.1!

Introducing a second thermostat variable

b5g2F(
i 51

N

pi
2G21

(
i 51

N

piy
2 , ~3.2!

a closed set of equation follows from Eq.~2.1!:

ȧ522a21b,

ḃ522ab. ~3.3!

These equations are valid during the flights, i.e., the interv
between collisions.

We treat collisions by looking at their net effect, i.e., ho
the velocities and positions of the particlesi andj involved in
the collision, are changed from their precollisional valu
pi 2 and pj 2 to their postcollisional valuespi 1 and pj 1 .
These are the only two velocities to change, and beca
( i 51

N pi
2 is of orderN, the changes ina andb are, according

to Eqs.~3.2! and ~3.3!, of orderN21. The number of colli-
sions in the whole system is an extensive quantity as well
there areO(N) of theseO(1/N) changes in a unit of time
1-4
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The averages of the small changes are not zero, so there
net effect ofO(1) per unit time to the time derivatives ofa
andb, which we will denote bya andb, respectively,

ȧ522a21b1a,

ḃ522ab1b. ~3.4!

This set of equations has a fixed point (a0 ,b0), which is
stable ifa0.0, so the system reaches this fixed point af
some time. On top of this dynamics, there are fluctuatio
Assuming that the collisions are independent, the cen
limit theorem applies, and the fluctuations areO(1/AN). For
more detailed analysis, we refer to Ref.@16#, where the in-
dependence of the changes ina and b is linked to the as-
sumption of molecular chaos.

Finally, we note that to maintain a stationary total pecul
kinetic energy in a system with a constanta0 thermostat, this
constant has to be chosen differently for varyingg. For g
50, i.e., in equilibrium,a0 can be set to zero, and kinet
energy is determined by the initial conditions. Near equil
rium, i.e., in the linear response regime, the right hand s
~rhs! of Eq. ~3.1! should scale asg2, i.e.,a0}g2. Obviously,
there are higher-order corrections to this behavior which p
a role for larger values ofg. If, for g5” 0, the initial condition
is such that the total peculiar kinetic energy is not equa
the stationary value, that value will be approached in tim

IV. STATUS OF AN APPROXIMATE CPR
IN THE THERMODYNAMIC LIMIT

Based on the discussion in the last paragraph of Se
and using the results in Sec. III, we will explore the pos
bility of an approximate CPR for the the SLLOD dynami
of hard spheres in the thermodynamic limit, at smallg and at
low density in this section. We will first obtain the desire
results for a constant coefficient of frictiona0 in the equa-
tions of motion~2.7! and then we will discuss the validity o
an approximate CPR when the system is under an isokin
Gaussian thermostat. To this end, our starting aim is to st
the generalizedm-symplectic properties of the matrixL(t
2t0) for the dynamics described by Eq.~2.7! during a flight
and Eq.~2.9! during an instantaneous binary collision b
tween thei th and thej th sphere.

However, as the matrixL(t2t0) is constructed from the
H and theM matrices, we will have to study the generaliz
m-symplectic properties of theH and theM matrices sepa-
rately.

A. Generalizedµ-symplecticity property of H„Dt…

The matrix T describing the dynamics ofdG during
flights is found from Eq.~2.7! to be

T[F 0 I

a0gC 2a0IG . ~4.1!

From Eq.~4.1!, it is straightforward to obtain

H~Dt !5exp@TDt#, ~4.2!
02110
is a

r
s.
al

r

-
e

y

o

II
-

tic
y

where the 333 sub-blocks ofH are given byHlm
[k] (Dt)

5h(k)(Dt)d l ,m , where

h(1)~Dt !5I1FgDt2
g@12exp~2a0Dt !#

a0
Gc,

h(2)~Dt !5
12e2a0Dt

a0
I1

g

a0
2 @a0Dt~11e2a0Dt!22

12e2a0Dt#c,

h(3)~Dt !5g@12e2a0Dt# c,

and

h(4)~Dt !5e2a0DtH I2gFDt1
1

a0
@12ea0Dt#GcJ .

~4.3!

Due to the complicated form ofH(Dt), it is easier to
study itsm-symplecticity properties in terms of the matrixT.
This involves the task of finding a possible matrixK satisfy-
ing the condition

TTK1KT5bK ~4.4!

such thatK2}I. If such a matrixK exists, thenH(Dt) is
generalizedm-symplectic with that matrix, and

m5expF E
t

t1Dt

bdt8G . ~4.5!

SinceK andT are constant matrices in the present contextb
is also a constant. Equation~4.4! can be treated as a simp
eigenvalue equation to solve for the eigenvalueb and the
eigenvectorK. We find that there exists a matrixG satisfying

TTG1GT52a0G ~4.6!

and the 6N36N matrix G in terms of its 333 sub-blocks, is
given byG[1]5G[4]50 andGlm

[2]52Glm
[3]5g, where

g5F 0 1 0

1 0 0

0 0 1
G . ~4.7!

We note that there may exist other forms ofg such thatG
satisfies Eq.~4.6!, but Eq.~4.7! is the simplest one that sa
isfiesG2}I and works for allg.

For the purpose of future use, we construct matricesT0
andH0(Dt) by settingg50 in Eq.~4.1! and Eq.~4.3!, with-
out settinga050 ~in reality, a050 wheng50), i.e.,

T0[F0 I

0 2a0IG ~4.8!

and

H0~Dt ![exp@T0Dt#. ~4.9!
1-5



e

o

o

t
am
c
-
e
te
th

l-

e

a
ua

r,

ing

the
he
of

erty
-
the

si-
act

f
so,

ion-
is

PR

r

at

er-

es,
of
y-
is

PR
,

D. PANJA AND R. van ZON PHYSICAL REVIEW E66, 021101 ~2002!
More explicitly, the 333 sub-blocks ofH0(Dt) are given by
(H0) lm

[k] (Dt)5h0
(k)(Dt)d l ,m , and h0

(k)(Dt) can be found by
puttingg50 in Eq. ~4.3! without puttinga050. The matrix
H0(Dt) is now not only generalizedm-symplectic with ma-
trix G, but alsom-symplectic withJ, i.e.,

@H0~Dt !#TJH0~Dt !5e2a0DtJ. ~4.10!

The relevance of this observation will become clear in S
IV C.

We also note that Eqs.~4.1!–~4.7! hold for any constant
coefficient of friction ~not necessarilya0), which implies,
using Eq.~2.21!, that for acollisionlessgas of point particles
obeying the SLLOD dynamics with a constant coefficient
friction, the CPR is exact, as can be seen in simulations@13#.

B. Generalizedµ-symplecticity property of Mi j

Unlike theH matrices, theMi j matrices corresponding t
a binary collision between thei th and thej th sphere do not
follow from Eq. ~2.9! directly. This is due to the fact tha
even though the sequences of binary collisions are the s
on the reference and the adjacent trajectories, the binary
lision between thei th and thej th sphere on these two trajec
tories in the phase space arenot simultaneous. One therefor
needs the dynamics of the tangent vectors for the time in
val, dt, between the two collisions on the reference and
adjacent trajectories involving thei th and thej th sphere. To
obtain an expression ofMi j , we follow the formalism devel-
oped in Refs.@11,22#, which in turn, is based on the forma
ism presented in Refs.@18# and @20#.

The dynamics of tangent vectors at a collision is deriv
in the Appendix. The result is that

dG15Mi j dG2 ~4.11!

with

Mi j 5~ I22N̂i j N̂i j !F I 0

R I G , ~4.12!

andR a symmetric matrix given by Eq.~A18!. This form of
Mi j immediately implies thatM is symplectic, butnot gen-
eralizedm-symplectic with matrixG for m51, i.e.,

Mi j
T JM i j 5J, ~4.13!

but

Mi j
T GMi j 5” G. ~4.14!

C. Generalizedµ-symplecticity property of L„tÀt0… and the
origin of an approximate CPR

From Secs. IV A and IV B above, we can finally see th
for a collection of hard spheres obeying the SLLOD eq
tions of motion with constant coefficient of frictiona0 ~a!
the H matrices are generalizedm-symplectic with matrixG,
but not with matrix J @see Eq.~4.6!# and~b! the M matrices
are symplectic butnot generalizedm-symplectic with matrix
G @see Eqs.~4.13! and ~4.14!#.
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Once theH and theM matrices are combined togethe
following Eq. ~2.16!, the matrix

L~ t2t0!5H~Dts!Mi sj s
H~Dts21!•••Mi 1 j 1

H~Dt0!

~4.15!

is seen to be generalizedm-symplecticneitherwith matrix G
nor with matrix J.

To study the degree of deviation from an exact CPR us
the properties ofL(t2t0) in Eq. ~4.15! with constant coeffi-
cient of frictiona0, we can use eitherK5G or K5J. While
the former choice implies that one has to try to estimate
deviation from an exact CPR using the distribution of t
unit vectorsN̂i j ’s and the collision angles for different sets
binary collisions in the expression ofM, the latter choice
means that one can make the estimate by using the prop
of the H matrices in Eq.~4.15!. We choose the latter ap
proach, because not only is it much easier to calculate
typical magnitude of a flight time of a sphere at low den
ties, but also, an estimate of the deviation from the ex
CPR can be made at smallg, as apower series expansionin
g. However, the smallness ofg, which has a dimension o
inverse time, has to be defined in a proper manner. To do
we notice that the density of the spheresn sets a time scale in
the form of the mean flight timet0 of an individual sphere,
and in three dimensionst0;ña0 /v0. Here, ñ5na0

3 is the
dimensionless density and, as before,v0 and a0 are typical
velocity and radius of a sphere. Thus, the actual dimens
less small parameter corresponding to the shear rateg̃
5gt0.

A naive way to estimate the deviation from an exact C
using the latter approach is to use the deviation of theH(Dt)
matrices from an exactm-symplecticity @see Eq.~4.15!#.
Such a deviation is characterized by the matrixD(Dt)
5@H(Dt)#TJH(Dt)2e2a0DtJ. The matrixD(Dt) can easily
be calculated from Eq.~4.3!. However, to estimate the orde
of the matrix elements ofD(Dt), an order of estimate of the
quantity Dt has to be obtained. To this end, we note th
while t0 is the mean flight time for anindividual sphere,Dt
in Eq. ~4.15! denotes the mean time for a flight ofN spheres.
This implies thatDt;t0 /N, as on an average, there areN/2
different binary collisions over a mean flight timet0 of an
individual sphere. Thus, one would expect that in the th
modynamic limit,D(Dt)→D(0)50 and one would be led to
conclude that theH matrices in Eq.~4.15! are all symplectic.
This in turn would imply, from Eq.~4.15!, that L(t2t0)
would bem-symplectic and therefore a gas of hard spher
obeying the SLLOD dynamics with a constant coefficient
friction a0 would satisfy an exact CPR in the thermod
namic limit. We demonstrate below that this simplification
not correct.

The proper estimate of the deviation from an exact C
has to be made by consideringH(t0). To see why this is so
we rewrite the matrixH(Dt) as

H~Dt !5e(N21)/2a0Dt)
i 51

N

Hi~Dt !, ~4.16!
1-6
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with Hi(Dt) defined by

~Hi ! lm
[k]~Dt !5d l ,m@d l ,ih

(k)~Dt !1~12d l ,i !

3~dk,11dk,4!e
2a0Dt/2I#. ~4.17!

In effect,Hi(Dt) describes the evolution of the infinitesim
deviation of the trajectory of thei th sphere, while it has an
almost trivial action on the infinitesimal deviation of the tr
jectory of the j th sphere,j 5” i . It is easy to see thatHi(Dt)
has some useful properties

Hi~Dt1!Hi~Dt2!5Hi~Dt11Dt2!,

@Hi~Dt i !,H
j~Dt j !#50 and @Hi~Dt !,Mi cj c

#50

if i cÞ i and j cÞ i . ~4.18!

The properties ofHi(Dt) in Eq. ~4.18! allow us to shuffle
the terms in Eq.~4.15! so as to collect together as man
Hi(Dt)’s with the samei as possible. The result is that to th
right of anyMi cj c

figure anHi c(t i c
c ) and anHj c(t j c

c ), where

t i c
c and t j c

c are the time of flights for thei cth and thej cth

spheres before their mutual collisionc. Consequently,

L~ t2t0!5e~N21/2! a0(t2t0)H)
i 51

N

Hi~ t2 t̃ i !J
3)

c51

s

Mi cj c
Hi c~t i c

c !Hj c~t j c

c !. ~4.19!

The product sign in Eq.~4.19! is to be expanded towards th
left, i.e. )c51

s Ac5As•••A1. Here, t̃ i is the last time that the
i th particle collided~or t0 if it did not collide!. From Eq.
~4.19!, it is now clear that the proper estimate for the dev
tion from an exact CPR has to be made by considering
properties ofHi(t i), with t i5O(t0), andnot from the prop-
erties ofHi(t0 /N).

We also notice that if one uses the correspondingH0 ma-
trices instead of theH matrices in Eq.~4.15! to construct an
analogous matrixL0(t2t0), defined by

L0~ t2t0!5H0~Dts!Mi sj s
H0~Dts21!•••Mi 1 j 1

H0~Dt0!,
~4.20!

then the matrixL0(t2t0) is m-symplectic, because of Eqs
~4.10! and ~4.13!. As a consequence, the logarithms of t
eigenvalues ofL̃0(t2t0), defined by

L̃0~ t2t0!5@L0~ t2t0!# TL0~ t2t0!, ~4.21!

pair exactly. If we arrange the corresponding Lyapunov sp
trum

L05 lim
t→`

@ L̃0~ t2t0!#1/2(t2t0) ~4.22!

in the decreasing order of magnitude asl1
(0) ,l2

(0) , . . . ,l6N
(0) ,

thenl i
(0)1l6N2 i 11

(0) 52a0.
02110
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Motivated by this, our approach to study the deviati
from an exact CPR for the matrixL(t2t0) will be to take
L0(t2t0) as the reference matrix. This is reasonable
cause, as we will show,L(t2t0) and L0(t2t0) are very
close for smallg̃, if t2t05t5O(t0). To show this, we first
write the matrixL0(t2t0) in the same form as Eq.~4.19!,
with Hi(t i)’s replaced byH0

i (t i),s. We then relate, fort
2t05t5O(t0), the difference matrix DL(t2t0)5L(t
2t0)2L0(t2t0) to the difference betweenHi(t i) and
H0

i (t i).
We now define new matricesDHi andEi , such that

DHi~t i ![Hi~t i !2H0
i ~t i !,

Ei~t i ![@H0
i ~t i !#

21DHi~t i !, ~4.23!

with

~H0
i ! lm

[k]~t i !5d l ,m@d l ,ih0
(k)~t i !1~12d l ,i !

3~dk,11dk,4!e
2a0t i /2I# ~4.24!

@for the definition ofh0
(k)(t i), see the paragraph precedin

Eq. ~4.10!#. It is easily seen thatEi(t i) has non-zero ele-
ments only for entries involving thei th sphere. This, togethe
with relations~4.18!, implies that

@Ei~t i !,H0
j ~t j !#50 for i 5” j

and

@Ei~t i !,Mi cj c
#50 if i c5” i and j c5” i . ~4.25!

The matrix Ei(t i) can be easily calculated from Eq
~4.23!. With the aid of Eqs.~4.3! and~4.9!, we now express
the matrix DHi(t i) defined in Eq. ~4.23! as DHlm

i (k)(t i)
5Dh i [k] (t i)d l ,m , where

Dh i (1)~t i !5Fgt i2
g@12exp~2a0t i !#

a0
Gc,

Dh i (2)~t i !5
g

a0
2 @a0t i~11e2a0t i !2212e2a0t i#c,

Dh i (3)~t i !5g@12e2a0t i#c,

and

Dh i (4)~t i !52ge2a0t iFt i1
1

a0
@12ea0t i#Gc. ~4.26!

The crucial point is that sincea0}gg̃, i.e., the dissipation is
quadratic in the shear field,DHi(t i) in Eq. ~4.26! can be
expanded in powers ofg to obtain

Dh i (1)~t i !5
ga0t i

2

2!
c, ~4.27!
1-7



s.

n

-

lv
e

,

w
l

es

her

es,
t
te

.
the

R is

he

i-

en-

D. PANJA AND R. van ZON PHYSICAL REVIEW E66, 021101 ~2002!
Dh i (2)~t i !5
ga0t i

3

3!
c,

Dh i (3)~t i !5ga0t ic, and Dh i (4)~t i !5
ga0t i

2

2!
c

at themost leading order.Thereafter, having combined Eq
~4.23!, ~4.26! and ~4.27!, all elements ofEi(t i) are seen to
have a prefactor of orderg̃3. This makesEi(t i) small com-
pared to 1. Hence, to first order,DL(t)5L(t)2L0(t) can
be found from Eq.~4.19! by keeping only the terms linear i
Ei(t i),

DL~t!5e~N21/2! a0tH)
i 51

N

H0
i ~t1t02 t̃ i !J

3S (
j 51

N

Ej~t1t02 t̃ j !)
c51

s

McH0
i c~t i c

c !H0
j c~t j c

c !

1 (
c51

s

)
a51

c

MaH0
i a~t i a

a !H0
j a~t j a

a !

3@Ej c~t j c

c !1Ei c~t i c
c !# )

b5c11

s

MbH0
i b~t i b

b !H0
j b~t j b

b !D .

~4.28!

We now shuffle all theEi c matrices to the right, by succes
sively exchanging the order ofEi c and the next
MbH0

i b(t i b
b )H0

j b(t j b

b ) to its right. These will commute very

often, because most collisions in the sequence will invo
other spheres than thei cth one. If they do not commute, w
write

Ei cMbH0
i b~t i b

b !H0
j b~t j b

b !5MbH0
i b~t i b

b !H0
j b~t j b

b !

3@MbH0
i b~t i b

b !H0
j b~t j b

b !#21

3EiMbH0
i b~t i b

b !H0
j b~t j b

b !.

~4.29!

From that point on, we work with
‘‘ @MbH0

i bH0
j b#21EiMbH0

i bH0
j b,’’ and shuffle that to the right.

Repeating this, we end up withL0(t) on the left side again
and find, symbolically,

@L0~t!#21DL~t!5 (
c51

s H) ~MH0H0!21J
3@Ej c~t j c

c !1Ei c~t i c
c !#H) MH0H0J

1(
j 51

N H) ~MH0H0!21J Ej~t1t02 t̃ j !

3H) MH0H0J . ~4.30!
02110
e

Sincet is of the order of a flight time of a sphere,s is of the
order ofN, but a typical sphere will have suffered only a fe
@a few here is roughlyO(1)# collisions. Consider a typica
term in the sum overc. TheMH0H0 terms in the products are
from collisions that involve thei cth or the j cth sphere, or
spheres that were involved in collisions with thei cth or j cth
sphere. The number ofMH0H0 will thus also be ofO(1).

The matrixEi c has nonzero elements only for the entri
associated with thei cth sphere. The multiplication by
MH0H0 yields more nonzero entries associated with ot
spheres, whose number however is ofO(1). Therefore, in
the whole sum ofs5O(N) terms in Eq.~4.30! will yield for
typical entries a result of order one~andnot of orderN as the
sum overs}N suggests!. Sinceall elements of theE matri-
ces are proportional togg̃2 as can be seen from Eqs.~4.23!,
~4.26!, and~4.27!, we conclude fort2t05t5O(t0) that

L~t!5L0~t!@ I1g̃3B#, ~4.31!

where the matrixB is of order 1 ing̃ and order 1 inN. Note
that B contains higher powers ofg̃ as well. Because it in-
volvesc and contributions from collisions between spher
B is not proportional to the identityI, so we cannot regard i
as a simple scalar factor~in which case the exact conjuga
pairing would be easy to obtain again!. Equation~4.31! im-
plies

DL̃~t!5L̃~t!2L̃0~t!5g̃3@BTL̃0~t!1L̃0~t!B#

1g̃6BTL̃0~t!B. ~4.32!

We can now see, from Eqs.~4.31! and~4.32! that the differ-
ences betweenL(t) andL0(t), and betweenL̃(t) andL̃0(t)
are small, as anticipated in Sec. IV C, by a relative orderg̃3.
Therefore the logarithm of the eigenvalues ofL(t) and
L0(t) also differ by a term of orderg̃3 in an absolute sense
If we now divide the logarithms of these eigenvalues by
time t, we see that the finite time~for time t) Lyapunov
exponents, calculated fromL̃0 and fromL̃ ~which we denote
asl i

(0)(t) andl i(t) respectively, fori 51,2, . . . ,6N) differ

by a termO(g̃3/t)5O(gg̃2). Using the fact thatl i
(0)(t)’s

satisfy the conjugate pairing rule,l i(t)’s too, will satisfy it
up to O(gg̃2). From the condition that

(
i 51

6N

l i
(0)~t!5(

i 51

6N

l i~t!523Na0 , ~4.33!

@which can be easily verified from Eqs.~4.3! and~4.12!#, we
see that on average over the pairs, the deviation from CP
zero.

We make one more observation at this stage. T
Lyapunov exponents~even the finite time ones! are invariant
underg→2g, so in a power series expansion of the ind
vidual Lyapunov exponents ing̃ @21#, the odd powers van-
ish. We therefore conclude that the logarithm of the eig
1-8
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values ofL(t) andL0(t) must differ by a term of orderg̃4,
and hence conjugate pairing ofl i(t)’s will be valid up to the
correction of the formgg̃3.

To extend these ideas for large (t2t0) @and finally for t
→`)#, we proceed in the following way. Notice that th
matrices L̃(t2t0) and L̃0(t2t0) are positive definite and
symmetric. This allows us to express the two matrices in
form of L̃0(t2t0)5exp(A0) and L̃(t2t0)5exp(A), where
for large (t2t0), both the eigenvalues ofA0 and A must
behave;(t2t0). In these terms, the difference between t
Lyapunov exponents forL̃(t2t0) andL̃0(t2t0) is related to
A2A0. Since the difference betweenL̃(t2t0) and L̃0(t
2t0) has an explicit prefactor ofg̃3, so will A2A0. Using
the symmetry argument that the Lyapunov exponents hav
be even functions ofg, we obtain

l i1l6N2 i 1152a01O~gg̃3!, i 51, . . . ,6N.
~4.34!

To explicitly extend the formalism developed in Eqs.~4.19!–
~4.32! to large t2t0 and thereby obtain a relation betwee
l i ’s andl i

(0)’s, we need to concatenate a lot ofL(t)’s. These
do not commute with each other, nor do they commute w
B’s in general. This prevents an explicit demonstration
how the deviation is built up. For the largest and the m
negative Lyapunov exponent, it has been possible to s
that they pair to2a0 plus corrections ofO(gg̃3) by means
of a kinetic theory approach@22,23#, based on the indepen
dence of subsequent collisions of a sphere. One expects
in the subsequent time intervals ofO(t0), theL(t) matrices
are not qualitatively much different from each other. The
fore, we expect the coefficient of theO(gg̃3) term in Eq.
~4.34! to be of the same order as that for a flight timet
5O(t0), i.e., of the order ofB, which isO(1).

We now return to the discussion of an approximate C
for the SLLOD equations of motion with an isokinet
Gaussian thermostat in between collisions. As discusse
Sec. III, in the nonequilibrium steady state and in the th
modynamic limit, the coefficient of dynamical friction repre
senting the isokinetic Gaussian thermostat for the SLL
dynamics fluctuates with 1/AN fluctuations around the fixed
value a0. We would therefore expect that the Lyapun
spectrum for the SLLOD dynamics with an isokinetic Gau
ian thermostat is given by that ofL(t2t0) plus terms of
O(1/AN). Consequently, the approximate conjugate pair
of Eq. ~4.34! can be extended to this thermostat once
neglect theO(1/AN) terms in the sum of the correspondin
l i andl6N2 i 11.

V. DISCUSSION

In this paper, we started with a collection ofN hard
spheres, each with unit mass and arbitrary radius. Next,
argued how the coefficient of friction representing the is
kinetic Gaussian thermostat in between collisions, fluctua
around a fixed valuea0 with 1/AN fluctuations in the NESS
Using the properties of the transformation matrices for
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infinitesimal phase space elementdG, we then showed tha
the CPR is expected to be violated, at the most, atO(g4) for
constant coefficient of frictiona0. The source of the CPR
violation is basically thea0gCR term in Eq.~2.7!, as it is
clearly seen that CPR would have been exact in the abs
of this term. Finally, we extended that result to the case w
the coefficient of friction represents an isokinetic Gauss
thermostat. Note that to obtain the deviations from CPR
the constanta0 thermostat,the number of particles did no
matter, so for that case the result holds for any numbe
particles, but with an isokinetic Gaussian thermostat betw
collisions, we need to takeN to infinity to make the connec
tion to the constanta0 thermostat.

In addition, as mentioned in the introduction of this pap
the condition that the mass of each sphere be unity, is
necessary. If we assume that the mass of thei th sphere ismi ,
then one can obtain the same equations of motion, Eqs.~2.1!,
~2.2!, and ~2.7!–~2.9! in terms of the primed quantities de
fined by r i85Amir , vi85Amiv, pi85pi /Ami , R8

5(r18 ,r28 , . . . ,rN8 ), V85(v18 ,v28 , . . . ,vN8 ) andN̂i j8 , defined as

N̂i j8
l5S d l ,iA mj

mi1mj
2d l , jA mi

mi1mj
D n̂i j

( l 51,2, . . . ,N). It is then straightforward, albeit lengthy an
laborious, to see that our entire analysis goes through
terms of these primed variables, once we useU8 in Eq. ~A14!
with

Ui j8 5Uj i8 5@mi1mj #
21/2I, ~5.1!

Ui i8 5
mj

mi
Uj j8 52Amj

mi
Ui j8 . ~5.2!

However, we must note that even though the analysis p
sented in Sec. IV is not affected when the masses and
radii of the spheres are not necessarily the same, one sh
not allow extreme variations in masses and the radii of
spheres. For large variations of the masses, the system
phase separate into phases in which the mean flight times
different, which will invalidate the use of the Boltzman
equation in Ref.@16# ~the Boltzmann equation has been us
to show the approach ofa towards the constant valuea0 in
Ref. @16#!. Furthermore, the use of a typical mean free tim
in Sec. IV B will not be possible for large variations in th
radii of the spheres. Our analysis in this paper, therefo
holds for somewhat limited variations of the masses and
radii of the spheres.

Another possible generalization of our analysis can
carried out for the case when the gas particles interact w
each other by means of a short-ranged, repulsive, inter
ticle potential ~an attractive potential may cause bou
states! for a constant multiplier thermostat. The dynamics
the particles can be again decomposed into flights and ‘‘c
lisions’’ at low density. While the transformation of the in
finitesimal phase space volume element over flights w
again be determined by theH matrices as in Eqs.~4.2!–~4.3!
~and thereby have the same properties as above!, the corre-
1-9
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spondingMi j matrices will not necessarily have a simil
form and properties as presented in Eqs.~4.12! and ~4.13!.
For a given average value of the peculiar kinetic energy,
constant multiplier thermostat has to be chosen carefully~see
the last paragraph of Sec. III!. Having denoted the constan
coefficient of friction again bya0, wherea0}g2, it is easy
to see that the resulting matrixMi j can be decomposed into
sum of two matrices,Mi j

(0) andDMi j , whereMi j
(0) is exactly

m symplectic butDMi j is not. If the terma0gCR in Eq.
~2.7! ~which is the cause for the violations of CPR in the fi
place! had been absent, thenMi j would have beenm sym-
plectic @24# and DMi j would have been zero, but with Eq
~2.7! in its present form, it is easily seen thatDMi j is }ag

;g̃3 and the proportionality constant depends on the ratio
the time the two colliding particles spend in contact w
each other to the time of a flight. This ratio is very small
low density of the gas and therefore the elements ofDMi j are
small in comparison withMi j

(0) . Since theH matrices have a
similar property, one can repeat the analysis of this paper
such interparticle short-range repulsive potentials usingH0

and Mi j
(0) as the reference matrices and arrive at the sa

conclusion as Eq.~4.34!.
Moreover, on the basis of the fact that at low densities a

short-ranged repulsive interparticle potentials~that do not
give rise to bound states!, the constant multiplier thermosta
and an isokinetic Gaussian thermostat are equivalent in
thermodynamic limit@16#, one would expect that under suc
conditions, the Lyapunov exponent spectrum for the Gau
ian thermostat would be practically the same as that of
corresponding constant multiplier thermostat, where the c
stant multiplier is once again proportional tog2. Therefore,
in view of the above discussion, we can also expectO(g̃4)
deviations from the CPR for a Gaussian thermosta
SLLOD equation of motion in the thermodynamic limi
where the particles interact with each other by means o
short-ranged repulsive potential.

Finally, we note here that the verification of our theory
means of computer simulation remains a challenge.
work for simulations is in progress at present, although
preliminary experience suggests that to retrieve thegg̃3 scal-
ing of the deviation of the sum of the pairs of Lyapun
exponents from2a0 is not an easy task.
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APPENDIX

In this appendix, we will derive the transformationMi j of
tangent vectors at a collision. The essential element is
the collision does not happen at the same time on refere
and on the adjacent trajectory. To understand the origin
this time lag between the binary collisions between thei th
and thej th sphere on the reference and the adjacent tra
tories, in Fig. 1, we have depicted an exaggerated schem
picture of the collisions taking place in the 6N-dimensional
phase space on the reference and the adjacent trajector
points A and C, respectively. The pointsB and D show the
corresponding positions of the adjacent and the refere
points, respectively, when the binary collisions atA and C
are taking place. Thus, the precollisional separation betw

the reference and the adjacent points is ABW5dG2 , while the

postcollisional separation is DCW5d G1 . Using thatur j2r i u
and ur j1d r j1vjdt2r i2dr i2vidtu both have to equalai
1aj , the time lagdt between the two collisions atA andC,
therefore, can be easily expressed as

dt52
~dr j 22dr i 2!•n̂i j

~vj 22vi 2!•n̂i j

52
dR2•N̂i j

V2•N̂i j

. ~A1!

To obtain the expression ofdG1 , we first express the
transformation of (R,V) in Eq. ~2.9! over a binary collision
between thei th and thej th sphere in a matrix form

G15Q~G2!5F R2

V222~V2•N̂i j !N̂i j
G . ~A2!

Next we notice that

FIG. 1. A schematic diagram of the collision dynamics on t
reference and the adjacent trajectories.
1-10
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dG15
]Q
]G2

•dG2* 2Ġ1dt, ~A3!

where,dG2* is the infinitesimal phase space separation
tween the two trajectories atA andC,

dG2* 5dG2 1 Ġ2 dt, ~A4!

and Ġ6 describes the equations of motion, Eq.~2.7!, right
after ~before! the collision atA, i.e.,

Ġ65F Ṙ6

V̇6

G5F V6

a0gCR62a0V6
G . ~A5!

Having calculated the quantity]Q/]G2 from Eq. ~A2!,

]Q
]G2

5F I 0

22V2•F ]N̂i j

]R2
N̂i j 1N̂i j

]N̂i j

]R2
G I22N̂i j N̂i j

G ,

~A6!

where each entry of the matrix on the rhs of Eq.~A6! is a
3N33N matrix, the expressions fordR1 and dV1 can be
obtained from Eq.~A3! as

dR15dR222~d R2•N̂i j !N̂i j , ~A7!

and

dV15A•dR2* 1~ I22N̂i j N̂i j !dV21~ I22N̂i j N̂i j !

3@a0gCR22a0V2#dt2@a0gCR12a0V1#dt,

~A8!

where

A522V2•F ]N̂i j

]R2
N̂i j 1N̂i j

]N̂i j

]R2
G

and dR2* 5(d R21V2dt). At this point, we use Eq.~2.9!
and obtain

~ I22N̂i j N̂i j !@a0gCR22a0V2#dt2@a0gCR12a0V1#dt

522a0g~N̂i j •CR2!N̂i j dt. ~A9!

Following Appendix B of@11#, the termA•dR2* can be ex-
pressed as

A•dR2* 522@~V2•dNi j !N̂i j 1~V2•N̂i j !d Ni j #,
~A10!

where

dNi j 5
1

A2
~0,0, . . . ,dni j , . . . ,2dni j , . . . ,0!,

~A11!
02110
-

satisfyingn̂i j •dni j 50. This orthogonality condition betwee
n̂i j and dni j also implies thatN̂i j •dNi j 50. To obtain an
expression fordni j , we need to take a look at Figs. 2 and
Figure 2 describes, in the laboratory frame, the binary co
sion process between thei th and thej th sphere on the refer
ence and adjacent trajectories; the thick-lined spheres ar
the reference trajectory whereas the thin-lined spheres ar
the adjacent trajectory. Figure 3 describes the same bin
collision process in the reference frame of thei th sphere
~with centerC). In Fig. 2, the thick-linedj th sphere~with
centerD) on the left depicts the collision situation on th
reference trajectory and the thin-linedj th sphere~with center
E) on the left depicts the collision situation on the adjace
trajectory. Clearly, in Fig. 3, the infinitesimal vector DEW is
given by

dr i j* 5dr j 22dr i 21~vj 22vi 2!dt , ~A12!

and since the lengths of both the linesCD and CE are ai
1aj (ai and aj are the radii of thei th and thej th sphere,
respectively!, we have

dni j 5
1

ai1aj
dr i j* . ~A13!

FIG. 2. Collision between thei th and thej th sphere. Thick-lined
spheres are on the reference trajectory, whereas the thin-l
spheres are on the adjacent trajectory.

FIG. 3. Same collisions as in Fig. 2, in the reference frame
the i th sphere.
1-11
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Let us define a 3N33N matrix U composed ofN3N
blocks of 333 matrices, such that, in terms of the blo
indices the only nonzero entries ofU are

Ui i 52Ui j 52Uj i 5Uj j 52I, ~A14!

where I is the 333 unit matrix. One can now write, usin
Eqs.~A11!–~A14! and Eq.~A1! that

dNi j 5
1

A2~ai1aj !
@U•dR21U•Ġ2dt#

5
1

A2~ai1aj !
FU2

~U•V2!N̂i j

V2•N̂i j
G•dR2 . ~A15!

From Eqs.~A10! and Eq.~A15!, we finally have
T.

-

v.

02110
A•dR2* 5
A2

ai1aj
F ~U•V2!N̂i j 1N̂i j ~U•V2!

2~N̂i j •V2!U1
V2•U•V2

VÀ"N̂i j

N̂i j N̂i j G•dR2

5~ I22N̂i j N̂i j !W•dR2 , ~A16!

whereW is a 3N33N symmetric matrix. Finally, using Eqs
~A1!, ~A7!–~A9!, and ~A16!, the expression forMi j can be
obtained as

Mi j 5~ I22N̂i j N̂i j !F I 0

R I G , ~A17!

where

R5W22a0g
N̂i j •CR2

V2•N̂i j

N̂i j N̂i j . ~A18!
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