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Stationary and transient work-fluctuation theorems for a dragged Brownian particle

R. van Zon and E. G. D. Cohen
The Rockefeller University, 1230 York Avenue, New York 10021

~Received 12 December 2002; published 7 April 2003!

Recently Wanget al. carried out a laboratory experiment, where a Brownian particle was dragged through a
fluid by a harmonic force with constant velocity of its center. This experiment confirmed a theoretically
predicted work related integrated transient fluctuation theorem~ITFT!, which gives an expression for the ratio
for the probability to find positive or negative values for the fluctuations of the total work done on the system
in a given time in a transient state. The corresponding integrated stationary state fluctuation theorem~ISSFT!
was not observed. Using an overdamped Langevin equation and an arbitrary motion for the center of the
harmonic force, all quantities of interest for these theorems and the corresponding nonintegrated ones~TFT and
SSFT, respectively! are theoretically explicitly obtained in this paper. While the TFT and the ITFT are satisfied
for all times, the SSFT and the ISSFT only hold asymptotically in time. Suggestions for further experiments
with arbitrary velocity of the harmonic force and in which also the ISSFT could be observed, are given. In
addition, a nontrivial long-time relation between the ITFT and the ISSFT was discovered, which could be
observed experimentally, especially in the case of a resonant circular motion of the center of the harmonic
force.

DOI: 10.1103/PhysRevE.67.046102 PACS number~s!: 05.70.Ln, 05.40.2a
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I. INTRODUCTION

Fluctuations of physical properties of statistical mecha
cal systems were first considered, in the modern contex
dynamical Hamiltonian or dissipative systems theory,
Evans, Cohen, and Morriss@1#. It concerned here the statis
tics of phase space contraction or entropy production fl
tuations over a certain time interval. In particular, the pro
abilities for equal positive or negative entropy producti
fluctuations of a certain magnitude were considered. T
different physical situations have been treated. First, in R
@1#, for a nonequilibrium stationary state, possibly far fro
equilibrium, the fluctuations of the dissipative~viscous! part
of the pressure tensor of a fluid were studied. Next, Ev
and Searles@2# studied the fluctuations of entropy productio
in an ensemble of phase space trajectories emanating fro
initial equilibrium state in the course of time. While the fir
case concerned a study of stationary state fluctuations in
jectory segments of a given duration along a single trajec
in a nonequilibrium stationary state and will be called t
stationary state fluctuation theorem~SSFT!, the second case
involved a study of an ensemble of many transient ph
space trajectories each over a timet, all emanating from an
equilibrium ensemble at timet50, which will be called a
transient fluctuation theorem~TFT!.

Mathematical proofs have been given for both theore
@2–5# and many computer simulations have confirmed b
theorems~e.g., @1,2,5#!. While the original proofs of both
FT’s were based on the deterministic dynamics of many p
ticles, later proofs for systems with stochastic dynamics w
given by Kurchan@6# and Lebowitz, and Spohn@7#. Only
one laboratory experiment had been carried out for the S
@8# and none for the TFT, until recently by Wanget al. @9#.

All deterministic theories were concerned with systems
phase space consisting of many particles. The experime
Wang et al. was carried out for a single Brownian partic
which was dragged by means of a uniformly moving h
monic potential generated by a laser through a many par
1063-651X/2003/67~4!/046102~10!/$20.00 67 0461
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molecular solvent. This system differs in an important asp
from the many particle systems in the phase space cons
ations. This is due to the fact that the~mesoscopic! Brownian
particle is much heavier than the surrounding fluid particl
which makes it tractable in a different, much simpler thou
approximate, way from the full dynamical systems treatm
in phase space mentioned above. In fact, the treatment
erally applied to such systems is via a Langevin equation
the stochastic motion of the Brownian particle in a mediu
in real space, which is characterized only by its friction w
the particle and its temperature. As a consequence, the
complicated many particle problem can be treated by a sin
particle Langevin equation, if it is near equilibrium and o
the level of irreversible thermodynamics@10#.

However, for the investigation of the fluctuation the
rems, an additional difficulty is that the experiment cons
ered here, uses a time dependent force on the particle, s
the Langevin equation contains a laser-induced harmo
force on the particle, where the position of the minimum
the harmonic potential changes in time. As a conseque
the treatments in Refs.@6# and @7# do not directly apply to
this experiment.

Furthermore, the phase space treatments of dynam
systems have always been such that~at least if the total en-
ergy of the system is kept constant! the total phase spac
contraction can be directly related to the total entropy p
duction of the system. This has led to the TFT@2,5# and the
SSFT @1,3,4# for the entropy production. To be sure, th
connection between phase space contraction and ent
production can only be made if the total work done on t
system is purely dissipative. However, in the Wanget al.
experiment, this is not so.

To see this, it is useful to consider the total~tot! work
Wt

tot done on the system during a timet:

Wt
tot5E

0

t

dtvt* •F~xt ,xt* !, ~1!
©2003 The American Physical Society02-1
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where

F~xt ,xt* !52k~xt2xt* ! ~2!

is the harmonic force exerted on the particle withxt the
position of the particle andxt* the position of the minimum
of the harmonic potential, andk the force constant of this
potential. Furthermore, in Eq.~1!, vt* 5 ẋt* . At t<0, in the
Wang experiment, the center of the harmonic potential is
rest atx0* 50. At t50, the harmonic potential is set in motio
relative to the fluid with a constant velocityv* , so thatxt*
5v* t for t>0 @11#.

The crucial question is now what is the dissipative part
Wt

tot which is responsible for the heat or entropy produced
the system as a result of the friction of the particle with t
surrounding fluid. The dissipative part should not inclu
any purely mechanical work. To see howWt

tot is related to
the dissipated work over a timet, we rewrite the total work
done,Wt

tot in Eq. ~1!, as follows:

Wt
tot5E

0

t

dt vt* •F~xt ,xt* !

52E
0

t

dt~vt2vt* !•F~xt ,xt* !1E
0

t

dt vt•F~xt ,xt* !

5kE
0

t

dt~ ẋt2 ẋt* !•~xt2xt* !1E
0

t

dt vt•F~xt ,xt* !

5DU1Wt
Br , ~3!

defining DU[(k/2)@ uDxtu22uDx0u2# with Dxt5xt2xt* ,
and

Wt
Br[E

0

t

dt vt•F~xt ,xt* !. ~4!

Here,Wt
Br is the work done on the Brownian~Br! particle by

the harmonic force. As~at least ideally! the Brownian par-
ticle has no internal energy, all this work is converted in
heat, which is the source of the entropy production. Hen
Wt

Br is the dissipated work. On the other hand, the termDU
in Eq. ~3! represents the purely mechanical~‘‘center of
mass’’! work done on the particle in the external harmon
potential.

Therefore, the entropy production of Wanget al. during
time t, denoted bySt in Ref. @9#, is really the total dimen-
sionless work done on the system, and we will denoted it

Wt5bWt
tot5bE

0

t

dt vt* •F~xt ,xt* !, ~5!

whereb[1/(kBT), kB is the Boltzmann’s constant, andT is
the temperature of the surrounding fluid. By following th
position of many, independent Brownian particles and us
Eqs. ~2! and ~5!, Wang et al. measured this dimensionles
work Wt—or what they called the entropy productio
04610
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St—over time intervalst and constructed from that th
probability distribution functionP(Wt), which they found
satisfies

P~Wt!

P~2Wt!
5eWt. ~6!

So they established experimentally the validity of a TFT
the total work done on the system (bWt

tot), rather than for
the entropy production of the system. Strictly speakin
Wanget al. measured an integrated variant~an ITFT! of the
TFT in Eq. ~6!, explained in Sec. II D. A direct transforma
tion of the TFT~6! for Wt to a TFT for the dimensionles
entropy production, which would bebWt

Br , is not obvious,
sinceDU in Eq. ~3! fluctuates also.

We remark that Mazonka and Jarzynski@12# studied the
same system as used in the experiment of Wanget al.
theoretically—before the experiment—and derived the T
and the SSFT for the total work done on the system, but
for the entropy production@13#.

Unaware of Mazonka and Jarzynski’s work, but in vie
of the experiment of Wanget al., we studied this experimen
independently@14#. The experiment of Wanget al. is clearly
important for practical purposes, since it involves a gene
property of the work done on a system. We discuss the
servability of the work related to TFT as well as SSFT for
arbitrary rather than a uniform motion of the harmonic p
tential. So, for the purpose of treating the experiment and
generalizations, in this paper, we too will treat the TFT a
SSFT for the dimensionless work, with a focus on the fea
bility to do a convincing SSFT experiment. To the best of o
knowledge, no fluctuation theorem forentropy production,
either an integrated transient fluctuation theorem~ITFT! or
an integrated stationary state fluctuation theorem~ISSFT!,
has been derived for a Wang-type system, neither from
phase space perspective nor in real space~via a Langevin
equation!.

The outline of the paper is as follows. In Sec. II, w
present our Langevin model and we develop the gen
theory for the verification and the experimental observabi
of the work related fluctuation theorems, and discuss an
teresting relation between the fluctuations in the trans
and in the stationary state. In Sec. III, we specialize the g
eral theory to the case of a linear and a circular motion of
minimum of the harmonic potential, investigating in deta
the observability of the ITFT and the ISSFT. In Sec. IV, w
end with a discussion.

II. THEORY

A. Definition of the model

Like in the experiment of Wang, the model we consid
has a spherical Brownian particle in three dimensions wit
radiusR and massm in a fluid with viscosityh and tempera-
ture T and the Brownian particle is subject to an extern
harmonic potential with a time dependent positionxt* of its
minimum. Fort<0, the minimum of the harmonic potentia
is at the origin,xt* 50, whereas fort.0, it moves with a
2-2
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velocity vt* , which can be, in principle, an arbitrary functio
of time. The equations of motion for the particle are then
the Langevin type:

ẋt5vt , ~7a!

mv̇t52avt2k~xt2xt* !1z t , ~7b!

wherext andvt are the position and velocity of the Brownia
particle, respectively. In this equation, the Brownian parti
feels three forces. The first force is the drag force2avt ,
with, according to Stokes’ law,

a56phR. ~8!

The second force is due to the harmonic potential@see Eq.
~2!#. The third and last force is a random forcez t , which is
taken to be Gaussian and delta correlated in time:

^z t&50; ^z tzs&52kBTad~ t2s!. ~9!

The strength of the random force in Eq.~9! is such that the
equilibrium distribution functionpeq for x andv,

f eq~x,v!5S bAkm

2p D 3

e2b[(1/2)muvu21(1/2)kuxu2] , ~10!

is stationary under the equations of motion Eqs.~7a! and~7b!
@15#.

The system will only be considered in the strongly ov
damped case

mk!a2. ~11!

Effectively, therefore, the mass can be seen as a smal
rameter and will be set equal to zero@15#. From Eqs.~7a!
and~7b!, we find then a simplified Langevin equation for th
position of the particle only,

ẋt52t r
21~xt2xt* !1a21z t , ~12!

with a relaxation time

t r5
a

k
. ~13!

When we only usext , the equilibrium distribution in Eq.
~10! reduces to

peq~x!5E dvf eq~x,v!5~kb/2p!3/2e2b(k/2)uxu2. ~14!

It is convenient to separate the average motion of
Brownian particle ~which results from the deterministi
forces alone!, from the stochastic motion. The average m
tion is given by the solutionyt* of the deterministic part of
the Langevin equation~12!, i.e., by

ẏt* 52t r
21~yt* 2xt* !, ~15!

with initial condition y0* 50. We can then look at the devia
tions from this average motion by introducing the transf
mation
04610
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Xt5xt2yt* . ~16!

This turns the Langevin equation~12! into the simple form

Ẋt52t r
21Xt1a21z t . ~17!

yt* follows from the general solution of Eq.~15!:

yt* 5e2t/try0* 1t r
21E

0

t

dt8e2(t2t8)/trxt8
* , ~18!

so that withy0* 50, and a partial integration, one obtains

yt* 5xt* 2E
0

t

dt8e2(t2t8)/trvt8
* . ~19!

The transformation~16! with Eq. ~19! can be interpreted a
going to a comoving frame, but it is not comoving with th
minimum of the harmonic potential, but withyt* which is
what the motion of a particle starting atx0* 50 would be if
there would be no noise term in the Langevin equation~12!.

Equation~17! shows that in the comoving frame, one h
the standard Ornstein-Uhlenbeck process@15,16#. Its solu-
tions are well known. The Green’s function of the Ornste
Uhlenbeck process, which gives the probability for the p
ticle to be atX1 at timet1 , given that it was atX0 at timet0 ,
is Gaussian in bothX0 andX1 . Its stationary solution is of
the form peq(X), with peq given in Eq. ~14!. Initially the
particle is distributed according to Eq.~14!, but becauseX0

5x0 (y0* 50), one sees that the initial distribution is alrea
the stationary one, and in this special, comoving coordin
frame, the distribution of the Brownian particle has an eq
librium distribution for all time:

P~X,t !5~bk/2p!3/2e2b(k/2)uXu2. ~20!

We end this section by writingWt in Eq. ~5! in terms of
Xt ,

Wt52kbE
0

t

dt@vt* •Xt1vt* •~yt* 2xt* !#. ~21!

B. Transient fluctuation theorem for the total work

In Eq. ~21!, Wt is a linear function ofXt . Combined with
the Gaussian nature both of the Green’s function of
Ornstein-Uhlenbeck process@Eq. ~17!# and of the initial dis-
tribution @Eq. ~20!#, this means that the distributionPT of Wt
is Gaussian,

PT~Wt!5
e2[Wt2MT(t)] 2/2VT(t)

A2pVT~t!
, ~22!

where the subscriptT denotes that the transient case is co
sidered. The meanMT of Wt is, from Eq.~21!,

MT~t!52kbE
0

t

dtvt* •~yt* 2xt* !, ~23!
2-3
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since^Xt&50 @Eq. ~20!#. Using the expression foryt* in Eq.
~19!, this can be also written as

MT~t!5kbE
0

t

dt28E
0

t28dt18e
2(t282t18)/trvt

28
*
•vt

18
* . ~24!

The varianceVT of Wt is only affected by the first term in
Eq. ~21!, so that

VT~t!5^~Wt2^Wt& !2&

52k2b2E
0

t

dt28E
0

t28dt18vt
28
*
•^Xt

28
Xt

18
&•vt

18
* , ~25!

where we used the symmetry of the time-correlation funct
^Xt

28
Xt

18
& under interchange oft18 and t28 . To calculate this

function, notice thatXt has a stationary distribution so it ca
be written aŝ Xt

282t
18
X0&. Using the formal solution of the

Langevin equation in the comoving frame@Eq. ~17!# for t
.0,

Xt5e2t/trX01a21E
0

t

dt8e2(t2t8)/trz t8 , ~26!

one obtains with ^z t8&50, ^X0&50, ^z t8X0&50, and
^X0X0&5@kb#211,

^XtX0&5@bk#21e2t/tr1. ~27!

The variance in Eq.~25! then becomes

VT~t!52kbE
0

t

dt28E
0

t28dt18e
2(t282t18)/trvt

28
*
•vt

18
* . ~28!

Comparing with the mean in Eq.~24!, we see

VT~t!52MT~t!. ~29!

This relation leads straightforwardly to the TFT. Given t
distribution function ofWt in Eq. ~22!, one easily shows tha

PT~Wt!

PT~2Wt!
5e2MT(t)Wt /VT(t), ~30!

which, by Eq.~29!, becomes

PT~Wt!

PT~2Wt!
5eWt, ~31!

which is identical to the TFT in Eq.~6!.

C. Stationary state fluctuation theorem for the total work

To move on to the SSFT, it is necessary to clarify what
stationary state means, since in theX coordinate system, the
distribution is stationary, which would suggest that the T
is also the SSFT. This is not the case. If one defines a
tionary state as that state in which~on average! the physical
~macroscopic! parameters do not change, then the tim
independence of the distribution ofX is not enough becaus
X involves, through its definition Eq.~16!, a time-dependen
transformation from the laboratory frame, in which th
04610
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physical parameters are measured, so that they would
depend on time. Only when these parameters have bec
stationary can one say that the system is stationary.

The SSFT was originally formulated for the average e
tropy production fluctuations on trajectory segments
lengtht along a single trajectory in the stationary state. He
we consider the statistics of the total work done on the s
tem over timet, divided bykBT,

Wt5bE
t i

t i1t

dtvt* •F~xt ,xt* !, ~32!

for a sequence of initial timest i of segments, all of lengtht,
along a single stationary state trajectory (i 51,2,3, . . . ). To
get the distribution ofWt of the segments along a trajector
we use the following reasoning. According to the Eqs.~2!
~for the force! and~16! ~the definition ofX), the expression
in Eq. ~32! is linear inXt ~just as in the transient case! and
@as Xt obeys the Langevin equation~17!# we still have a
Gaussian Green’s function and a Gaussian stationary stat
that the distribution ofWt for each ti is again Gaussian:

Pti
~Wt!5

e2[Wt2Mti
(t)] 2/2Vti

(t)

A2pVti
~t!

, ~33!

with the mean and the variance given by, respectively,

Mti
~t!52kbE

t i

t i1t

dt vt* •~yt* 2xt* !, ~34!

Vti
~t!52kbE

t i

t i1t

dt28E
t i

t28dt18vt
28
*
•vt

18
* e2(t282t18)/tr. ~35!

We assume that for sufficiently larget i , Mti
, and Vti

will
reach steady state values~see Sec. III for examples!, and
become independent ofi. If in addition, the correlation be-
tween different segments (@ t i ,t i1t# and@ t j ,t j1t#, say! de-
cays sufficiently fast~whenut i2t j u gets larger!, then the dis-
tribution of Wt along a trajectory in the stationary state
given by

PS~Wt!5
e2[Wt2MS(t)] 2/2VS(t)

A2pVS~t!
. ~36!

Here the subscriptS denotes that this distribution refers t
the distribution ofWt over segments along the stationa
state trajectory. The meanMS is, from Eq.~34! and using Eq.
~19!, given by

MS~t!5 lim
t→`

kbE
t

t1t

dt28E
0

t28dt18e
2(t282t18)/trvt

28
*
•vt

18
* ,

~37!

while the varianceVS is, from Eq.~35!, given by

VS~t!5 lim
t→`

2kbE
t

t1t

dt28E
t

t28dt18e
2(t282t18)/trvt

28
*
•vt

18
* . ~38!
2-4
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Note that in the inner most integral in the expression for
mean in Eq.~37!, the lower bound extends to time zer
whereas in the expression for the variance in Eq.~38!, it
extends tot. This is the origin of the fact thatVS and 2MS
are not identical@while VT52MT , Eq. ~29!#. The deviation
can be characterized by

«~t![
2MS~t!2VS~t!

2MS~t!
. ~39!

Using this definition and Eq.~36!, one sees that

PS~Wt!

PS~2Wt!
5expH Wt

12«~t!J . ~40!

This means that provided

«~t!→0 as t→`, ~41!

we have

VS~t!→2MS~t! as t→`, ~42!

and the SSFT holds:

PS~Wt!

PS~2Wt!
→eWt as t→`. ~43!

Of course, for any givenvt* , Eq. ~41! can be tested, bu
how general can we expect it to be satisfied? We w
thereto Eq.~39! with Eqs.~37! and ~38! as

«~t!5

lim
t→`

kbE
t

t1t

dt28E
0

t

dt18vt
28
*
•vt

18
* e2(t282t18)/tr

MS~t!

5

lim
t→`

kb~xt* 2yt* !E
0

t

dt28e
2t28/trvt1t

28
*

MS~t!
, ~44!

where Eq.~19! has been used. Here, the denominator is
total work done of the system in the stationary state in ti
t. If we are not in equilibrium, this is positive and grow
with t. In the numerator, the exponential in the integral w
make the integral bounded for larget, provided thatvt* does
not grow exponentially in time with an exponent bigger th
t r

21 . Then« will become zero}1/t ast approaches infinity,
and the SSFT in Eq.~43! holds.

D. Integrated fluctuation theorems

In experiments such as done by Wanget al. @9#, it is easier
to check an integrated fluctuation theorem@17#, because it is
easier to obtain then good statistics for the required qua
ties. The integrated transient fluctuation theorem reads

PT~Wt,0!

PT~Wt.0!
5^e2Wt&T

1 , ~45a!
04610
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where the left-hand side is the quotient of the probabilities
see a negative, respectively, a positive total workWt after a
time t,

PT~Wt,0![E
2`

0

dWtPT~Wt!, ~45b!

PT~Wt.0!512PT~Wt,0!, ~45c!

and the right-hand side of Eq.~45a! is the average of exp
(2Wt) over positiveWt , i.e.,

^e2Wt&T
1[

E
0

`

dWtPT~Wt!e
2Wt

E
0

`

dWtPT~Wt!

. ~45d!

The ITFT of Eq.~45a! can be derived from the TFT in Eq
~31! by first rewritingPT(Wt,0)5*2`

0 dWt PT(Wt) as

E
2`

0

dWtPT~Wt!5E
2`

0

dWtPT~2Wt!e
Wt

5E
0

`

dWtPT~Wt!e
2Wt, ~46!

and then dividing byPT(Wt.0).
An ISSFT can also be derived, but it is a little mo

subtle. Thereto, one has to consider whether

PS~Wt,0!

PS~Wt.0!
5

t→`

^e2Wt&S
1 ~47a!

holds, where

PS~Wt,0![E
2`

0

dWtPS~Wt!, ~47b!

PS~Wt.0![12PS~Wt,0!, ~47c!

and

^e2Wt&S
1[

E
0

`

dWtPS~Wt!e
2Wt

E
0

`

dWtPS~Wt!

. ~47d!

To start the derivation of the ISSFT of Eq.~47a!, the numera-
tor of Eq. ~47d! is rewritten, using Eq.~40!, as

E
0

`

dWtPS~Wt!e
2Wt

5E
0

`

dWtPS~2Wt!expH «~t!Wt

12«~t!J
5E

2`

0

dWt PS~Wt!expH 2
«~t!Wt

12«~t!J

5E
2`

0
expH 2

@Wt2MS~t!#2

2VS~t!
2

«~t!

12«~t!
WtJ

A2pVS~t!
, ~48!
2-5
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where Eq.~36! was used. We saw that the SSFT holds if«
→0 for larget. Consider the exponent in Eq.~48!. Writing
out the square, this has a term linear inWt of the form

FMS~t!

VS~t!
2

«~t!

12«~t!GWt5
MS~t!

VS~t!
@122«~t!#Wt . ~49!

As t→`, we can neglect« compared to one. Since this
the only place where« occurs, we can set« equal to zero on
the right-hand side of Eq.~48!, which then becomesP(Wt
,0). Dividing by P(Wt.0) on both sides in Eq.~48! now
yields the ISSFT in Eq.~47a!.

For the purpose of the investigation of the observability
the fluctuation theorems, discussed in Sec. III, we end
section by giving the explicit forms of the left- and righ
hand sides of the integrated fluctuation theorems Eqs.~45a!
and ~47a!. Defining

LT~t![
PT~Wt,0!

PT~Wt.0!
, RT~t![^e2Wt&T

1 , ~50a!

LS~t![
PS~Wt,0!

PS~Wt.0!
, RS~t![^e2Wt&S

1 , ~50b!

the TFT states thatLT5RT , and the SSFT thatLS5RS ~the
latter for larget only!. Using Eqs.~22!, ~36!, and~45a!, we
get the following explicit expressions:

LT~t!5RT~t!, ~51a!

RT~t!5

12erfS MT~t!

A2VT~t!
D

11erfS MT~t!

A2VT~t!
D , ~51b!

LS~t!5

12erfS MS~t!

A2VS~t!
D

11erfS MS~t!

A2VS~t!
D , ~51c!

RS~t!5eVS(t)/22MS(t)

12erfS VS~t!2MS~t!

A2VS~t!
D

11erfS MS~t!

A2VS~t!
D .

~51d!

We can simplify the expressions forLT and RT using the
relation betweenMT andVT in Eq. ~29!:

LT~t!5

12erfS 1

2
AMT~t! D

11erfS 1

2
AMT~t! D . ~52!

In order to demonstrate the difference betweenLS and RS ,
we rewrite Eq.~51d!, using Eq.~39!, in terms of« as
04610
f
is

RS~t!5e2«(t)MS(t)

12erfS @122«~t!#MS~t!

A2VS~t!
D

11erfS MS~t!

A2VS~t!
D , ~53!

which shows that only fort→`, LS5RS , i.e., that the work
related ISSFT holds.

E. Transient fluctuations versus stationary fluctuations

An interesting relation can be derived for the ratio of t
probability of a negative total work and that of a positiv
one, for the transient caseLT and the stationary caseLS .
Using Eqs.~51a!–~51c! and the asymptotic expansion of th
error function,

erf~x!512
e2x2

Ap
@x211O~x22!#, ~54!

one obtains

LT

LS
→AVT

VS

MS

MT
e2[ MT

2(t)/2VT(t)] 1[ MS
2(t)/2VS(t)] . ~55!

Here theO(x22) in Eq. ~54! could be neglected. This, be
cause whent→`, MT andMS @Eqs.~24! and ~37!, respec-
tively# will both grow linearly in time,MT;MS;O(t) and
similarly VT;VS;O(t) @by Eqs.~29! and~42!#, so that the
arguments of the error functions in Eqs.~51b! and ~51c!
become large (;At) for large t. In fact, MS and MT will
grow with the same coefficient, as the rate of work done
the system will become stationary, but they will in gene
have a bounded difference, i.e.,MS2MT;O(1), aswill VS
andVT , i.e.,VS2VT;O(1). One, therefore, has, using Eq
~29! and ~42!, an asymptotic behavior

MT~t!→wt1a1 , VT~t!→2wt12a1,

MS~t!→wt1a2 , VS~t!→2wt1a3, ~56!

for t→`, where theai are independent oft. w is in fact the
asymptotic rate at which work is supplied to the system, i
the consumed power. By expanding in terms of 1/t, we ob-
tain for the exponent in Eq.~55! : 2@MT

2(t)/2VT(t)#
1@MS

2(t)/2VS(t)#52(1/4)a11(1/2)a22(1/8)a3 , i.e., it
approaches a nonzero constant. The prefactor in Eq.~55! can
similarly be shown to go to one ast→`, so that we have for
larget,

LT~t!

LS~t!
5

t→`

e2(1/4)a11(1/2)a22(1/8)a3

5expFMS~t!2MT~t!

2
2

VS~t!2VT~t!

8 G , ~57!

where Eq.~56! has been used to re-express this ratio in ter
of the means and variances of the transient, respectively,
tionary state. Because the right-hand side of Eq.~57! is not
2-6
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equal to one in general, this shows that the ISSFT is not
the limit of the ITFT for larget.

III. APPLICATIONS

In this section, two kinds of motion are considered for t
harmonic potential. In both cases, parameters will be va
to see under what conditions an experiment would be abl
demonstrate the integrated work fluctuation theorems~both
transient and stationary! most convincingly. The motion tha
will be considered first, corresponds to the situation in
experiment of Wanget al., i.e., it is a uniform linear motion.
The other is a circular motion and might be implemented
a future experiment. Both approach a stationary state.

A. Linear motion of the harmonic potential

The particular case considered here is a linearly mov
harmonic potential, i.e.,xt* 5voptt x̂ for t>0. The quantities
with which to test the work fluctuation theorems, are given
Eqs. ~51a!–~51d!. The only unknowns are the means a
variances of the transient and stationary distributions
these are given by Eqs.~24!, ~29!, ~37!, and~38!. If we insert
vt* , which is a constantvoptx̂ here, into these equations, w
obtain straightforwardly

MT~t!5w$t2t r@12e2t/tr#%, ~58a!

VT~t!52MT~t!, ~58b!

MS~t!5wt, ~58c!

VS~t!5VT~t!52w$t2t r@12e2t/tr#%, ~58d!

where

w5abvopt
2 , ~58e!

which can be interpreted according to Eq.~58c! as the work
delivered to the system per unit time. The equality betwe
VS andVT in Eq. ~58d! follows because the velocity of th
center of the harmonic potentialvt* is constant, so that the
integrands in Eqs.~28! and ~38! only depend on the differ-
encet282t18 , and the shift overt in the definition ofVS is
irrelevant. For this case, Eqs.~58a!–~58d! were already de-
rived by Mazonka and Jarzynski in Ref.@12#.

By the theory presented in the Sec. II, the TFT holds
any motion of the harmonic potential, hence also in this c
LT5RT . The SSFT holds if« @Eq. ~39!# vanishes ast
→`, and this is so here, since

«~t!5
t r@12e2t/tr#

t
. ~59!

We now discuss the observability of the work related IT
and the ISSFT for this model. There are only two relev
parameters for the fluctuation theorems here, the relaxa
time t r @Eq. ~13!# and the rate of dimensionless work donew
@Eq. ~58e!#. To obtain realistic values for these paramete
orders of magnitude of various quantities can be taken fr
Ref. @9#. With the radiusR of the order of 3mm, and the
viscosity of waterh of the order of 1023 kg m21s21, ac-
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cording to Eq.~8!, a is of the order of 531028 kg/s. Withk
of the order of 1027 kg s22, t r becomes of the order of 0.5
@Eq. ~13!#. Furthermore, taking the temperature to be 300
givesb of the order of 2.431020 kg m2 s22, and withvopt
of the order of 1mm/s, we find from Eq.~58e! that w is of
the order of 12 s21.

For the case thatw512 s21 and t r50.5 s, the expres-
sions in Eqs.~51a!–~51d! using Eqs.~58a!–~58d!, are plotted
together in Fig. 1~a!. It is striking that even though we know
that the ISSFT holds for sufficiently larget, this is not at all
observed in the figure: the curves ofLS and RS are com-
pletely different; in fact, the curve forLS is indistinguishable
from the t axis. Furthermore, both of these curves are d
ferent fromLT , which, given the result in Eq.~57! of Sec.
II E, is less of a surprise. Clearly, the range oft for which
the ISSFT is valid lies beyond the point where bothLS and
RS have relaxed to zero in Fig 1~a!. This means thatfor the
parameters typical of the Wang experiment, the ISSFT c
not be observed, in contrast to the ITFT, as the curve ofLT
can be seen clearly, andLT equalsRT , so that the ITFT
could be observed.

The reason that there is such a big difference in the sig
for the transient and the stationary case, i.e., that the nega
work fluctuations are more suppressed inLS than in LT , is
the following. SinceMT(0)50 @Eq. ~23!# in the argument of
the error functions in Eq.~52!, LT(t50)51. As the function
LT decays with increasingt, the question of whether it can
be observed depends on whether it does not decay
quickly. On the other hand, the argument of the error fu
tion in Eq.~51c!, MS /A2VS does not have a limit of zero fo
t→0. In fact, using Eqs.~58c! and~58d! and expanding int,
one finds

lim
t→0

MS~t!

A2VS~t!
5Awt r /2, ~60!

FIG. 1. Integrated fluctuation theorems for the work for t
linearly moving harmonic potential:LT5RT @cf. Eq. ~51a!#, RS and
LS versust ~varying ranges! with ~a! t r50.5 s andw512 s21; ~b!
t r50.2 s andw54.8 s21; ~c! t r50.08 s andw51.92 s21; and~d!
t r50.032 s andw50.768 s21 ~in the last case, the curves ofLT

5RT andRS are indistinguishable!.
2-7
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which can be large. So with Eq.~51c!, one has fort→0

LS~0!5
12erf~Awt r /2!

11erf~Awt r /2!
. ~61!

For the case plotted in Fig. 1~a!, Awt r /25A3, so that
LS(0)5731023. No wonder we cannot see it in Fig. 1~a!.
LS is exponentially suppressed for large values ofwt r ,
which is the average work done in the stationary state du
a relaxation timet r . As Wt50 for t50 for all trajectories,
it follows from definition ~50b! that RS(0)51. Comparing
this value with the value ofLS(0) @Eq. ~61!#, we see that
there is no chance to observe the SSFT if the work d
during t r is too large.

Thus in order to observe the SSFT, we have to reduce
work done in the timet r . One direct way to do this is to
change the particle’s radius. From Eqs.~8! and ~13!, we see
that t r}R, whereas from Eq.~58e!, w}R as well, sowt r
}R2. Another way would be to reduce the velocity of th
harmonic potential, which does not affectt r , but changes
w}vopt

2 . Choosing to work with the radius as the contr
parameter~partly because smaller particles than used in
Wang experiment are commercially available!, we plotted in
Figs. 1~b!–1~d!, what happens when we make the partic
2.5 times smaller consecutively, thus reducing the work d
per relaxation time each time by a factor 6.25. In first
stance@Figs. 1~b! and 1~c!#, the curve ofLS gets closer to the
curve RT , andLS starts to get visible. But only in the las
graph, Fig. 1d, where the particle’s diameter is about
times smaller than in Fig. 1~a! ~which would meanR
'200 nm in the Wang experiment!, do we clearly see thatLS
approachesRS . In this case,wt r'0.02, confirming that the
work done int r needs to be small to see a convincing sig
of the ISSFT.

Finally, we look at Eq.~57!, which says that in the longt
limit, the ratio ofLT andLS becomes a constant. Using Eq
~58a!–~58d! in this case, Eq.~57! reads

LT~t!

LS~t!
5e(wtr /2). ~62!

FIG. 2. Illustration of the relation between transient and stati
ary work fluctuations@Eq. ~57!#, for the linearly moving harmonic
potential.LT andLS are plotted logarithmically as a function oft,
with t r50.2 s andw54.8 s21 @cf. Fig. 1~b!#. The constant ratio in
Eq. ~57! becomes a constant distance between the curves in
logarithmic plot.
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Taking t r50.2 s andw54.8 s21, we plotted LT and LS
logarithmically in Fig. 2 to illustrate Eq.~62!. Equation~62!
shows once more that negative fluctuations of the work
more suppressed in the stationary state than in the tran
period.

B. Circular motion of the harmonic potential

In the case of a circular motion of the harmonic potenti
we write

xt* 5r $sin~Vt !x̂1@12cos~Vt !# ŷ%, ~63!

for t>0. We use the same procedure as in the previous c
i.e., we determinevt* ,

vt* 5rV$cos~Vt !x̂1sin~Vt !ŷ%, ~64!

for t>0; insert this into Eqs.~24!, ~37!, and~38!; and obtain
straightforwardly

MT~t!5wH t2t r

2Vt r sin~Vt!e2t/tr

11V2t r
2

2t r

@12V2t r
2#@12cos~Vt!e2t/tr#

11V2t r
2 J , ~65a!

VT~t!52MT~t!, ~65b!

MS~t!5wt, ~65c!

VS~t!5VT~t!52MT~t!, ~65d!

where now

w5
abr 2V2

11V2t r
2

. ~65e!

The expression for« follows using its definition Eq.~39!:

«~t!5
t r

~11V2t r
2!t

$2Vt r sin~Vt!e2t/tr

1@12V2t r
2#@12cos~Vt!e2t/tr#%, ~66!

which again vanishes like 1/t whent→`, so that the ISSFT
holds, i.e.,LS5RS for larget.

Note that the Eqs.~65a!–~65e! and ~66! reproduce the
Eqs. ~58a!–~58e! and ~59! in the limit for V→0, keeping
vopt5rV constant. But these equations are not just an ex
sion of the linear case. Under theresonancecondition Vt r
51, « in Eq. ~66! becomes

«~t!5
t r sin~t/t r !

t
e2t/tr, ~67!

i.e., it decays exponentially, rather than}1/t ~which it does
for all other choices ofV). In addition, in the resonance cas
« is zero at timesnpt r for n51,2,3, . . . , andexponentially
small (;e2np) in between; consequently, at these times,LS
and RS are equal@Eqs. ~51c! and ~53!#, whereas they are

-

is
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exponentially close in between. This means that the ISS
holds and can be visible at much shorter time scales tha
the linear case.

In Fig. 3, LT5RT , LS andRS from Eqs.~51a!–~51d! are
shown for two cases, which forV50 become identical to
Figs. 1~b! and 1~c!. For these cases we show what happen
their respective resonance pointsV51/t r and what happens
whenV is larger, 5/t r . In varying the frequency, we keepw
fixed, which physically means we would have to adjusr
according to Eq.~65e!.

From Fig. 3~a!, we see that at the resonant pointV
51/t r , while LS could not be seen in theV'0 case@cf. Fig.
1~b!#, it can now be seen, but is still too small compared
RS to check the SSFT. If atV50 the value ofLS could be
seen@Fig. 1~c!#, then going to the resonance, improves t
situation: in Fig. 3~c!, LS andRS approach each other after
far shorter time than in Fig. 1~c!, and become indistinguish
able aftert5pt r , because of the exponentially small diffe
ence between them as discussed above. We remark that
the agreement is already good in theV50 case@like in Fig.
1~d!#, going to the resonance changes little. Furthermore,
see from Fig. 3 that going beyond the resonance (V55/t r)
will cause the curves to deviate from each other again.
also note that above resonance, the work fluctuations in
stationary state are larger than those in the transient c
which is the opposite as for the linear motion. In fact, t
form Eq. ~57!, takes here is@using Eqs.~65a!, ~65b!, and
~65d!#

LT~t!

LS~t!
5

t→`

expH S 12V2t r
2

11V2t r
2D wt r

2 J , ~68!

for t→`. The exponent changes sign going fromVt r,1 to
Vt r.1. What is happening physically is that the system
driven so fast that it cannot relax within one cycle. Th

FIG. 3. Integrated fluctuation theorems for the work for t
circular motionLT5RT @cf. Eq. ~51a!#, LS andRS versust with ~a!
t r50.2 s, w54.8 s21 @as in Fig. 1~b!# at resonanceV51/t r ; ~b!
samet r andw butV55/t r ; ~c! t r50.08 s,w51.92 s21 @as in Fig.
1~c!# at resonanceV51/t r ~where RS is indistinguishable from
LT5RT); and~d! samet r andw but V55/t r . Note that in~a! and
~c! beyond a timept r , all curves become indistinguishable.
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increases the fluctuationsWt . On the basis of the foregoing
we see that in order to demonstrate the ISSFT, it helps to
to a resonant circular motion.

IV. DISCUSSION

~1! Inspired by the experiment of Wanget al. @9# which
showed that the work related ITFT holds when a small la
bead is dragged linearly through a fluid by means of a las
induced harmonic force, a model of a Brownian particle in
harmonic potential with an arbitrarily moving minimum wa
used to study both the work related ITFT and ISSFT, un
more general conditions. From the Langevin equation t
describes the motion of the Brownian particle in this simp
model, everything can be explicitly calculated. As expect
the work related TFT holds for all time, as does its integra
variant ITFT. The work related SSFT and its integrated v
sion ISSFT hold for sufficiently large times provided a s
tionary state exists.

We also found an interesting relation between the w
related ISSFT and ITFT. If one looks at the ratios for t
probability to find in a timet a negative versus a positiv
work done on the system, in the transient stateLT and in the
stationary stateLS , then LT /LS approaches a constan
~which is not one! ast→`, given by Eq.~57!.

~2! We have not found many choices for the motion of t
harmonic potentialxt* for which a stationary state exists@in
the sense that the limits of Eqs.~37! and~38! exist#. There is
the linear motion corresponding to the Wanget al. experi-
ment, which has been worked out in Sec. III A, and there
the possibility of a circular motion treated in Sec. III B, a
well as a spiral motion, which is a trivial superposition of th
previous two. However, any motion which in the course
time approaches one of these cases, will also reach a sta
ary state, corresponding to that case. In contrast to the sim
motion of the harmonic potential considered in Sec. III,
lowing for an arbitrary motion of the harmonic potentia
may give rise to~arbitrarily! different fluctuations in the tran
sient and the stationary cases.

~3! We note that on the basis of our explicit calculation
we are able to explore under what conditions the work
lated ITFT and ISSFT might be observable, which is relev
for the devise of future experiments.

For the ITFT, which holds for all time, observability i
purely a matter of how fast the quantityLT decays: if it
decays too fast, the ITFT will not be measurable. We show
that if one inserts values taken from the Wang experiment@9#
into the explicit expression ofLT , the ITFT shows a clear
signal that decays on the order of a second, consistent
the fact that the ITFT could be observed in that experime
The relaxation time, i.e.,t r , however is off; the relaxation
time found in the experiment is of the order of 1–2
whereas the value of the harmonic force constant and
application of Stokes’ Law give a relaxation time of 0.5
This could be due to boundary effects, local heating due
the laser, deviations from the harmonic nature of the las
induced force.

The fact that the ITFT can be observed does not im
that the ISSFT can be observed. In fact, problems with
2-9
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servability arise when we insert values taken from the Wa
experiment@9# into the quantities for the ISSFT: the signal
LS is then too small because the work done on the system
a relaxation time is too large. There are a few ways to
prove this situation, i.e., to make the ISSFT observable in
experiment: first, one can take a smaller particle, or seco
make the velocity with which it moves through the flu
smaller. Both methods reduce the work done in a relaxa
time t r . If the diameter of the particle is reduced to about
times smaller than the original one~which means about 400
nm across!, we see that the ISSFT can indeed be observ

The circular motion that we investigated offers a th
possibility to improve the observability of the ISSFT: Und
resonance conditions (Vt r51), the deviations from the
ISSFT become exponentially small after a timept r .

~4! We end by giving some issues that are open for fut
investigation. Some possible extensions of the theory co
be the following. The theory developed here is for the ov
damped case only. One might wonder if there is ever
practical need to consider the situation where the dampin
not so large. That would mean the theory would start wit
Langevin equation of motion forx andv, or a Kramers equa
tion. We have carried out such calculations for the case
linear motion of the harmonic potential and found the sa
results as reported here. In the case of the circular mot
this would also allow a more precise discussion of the role
the centrifugal force~due to V), which a rough estimate
limits to V!a/m ~this is of the order of 105 Hz for param-
e

ns
e

t
e
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eters taken from the Wanget al.experiment!. One could also
consider the case of anharmonic rather than harmonic po
tials. On a practical level, is seems plausible that the the
could be applied to other systems, such as linear electr
circuits and could be particularly relevant to nanotechnolo

On a more fundamental level, one could ask what
precise relation is of the work fluctuation theorem~for
bWt

tot) discussed here and the usual entropy produc
theorems~for bWt

Br) for dynamical and stochastic system
@3–7#. While the work fluctuation theorems hold for a
classes of systems considered so far, this appears not t
the case for the entropy production theorems. In a fut
publication, we intend to discuss this question in detail, sin
the theory needed for this deviates too much from the pre
one to be included it in this paper. We can state, howe
that for the models considered here, such a theory indic
that while an SSFT for the entropy production, i.e., f
bWt

Br , appears to hold for long times as usual, the TFT
the entropy production seems to holdfor long times onlyas
well @18#, and not as an identity for all times, as would b
expected@19#.
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