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Stationary and transient work-fluctuation theorems for a dragged Brownian patrticle
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Recently Wanget al. carried out a laboratory experiment, where a Brownian particle was dragged through a
fluid by a harmonic force with constant velocity of its center. This experiment confirmed a theoretically
predicted work related integrated transient fluctuation thedi&faT), which gives an expression for the ratio
for the probability to find positive or negative values for the fluctuations of the total work done on the system
in a given time in a transient state. The corresponding integrated stationary state fluctuation {88 €T
was not observed. Using an overdamped Langevin equation and an arbitrary motion for the center of the
harmonic force, all quantities of interest for these theorems and the corresponding nonintegra(@& tiaesl
SSFT, respective)yare theoretically explicitly obtained in this paper. While the TFT and the ITFT are satisfied
for all times, the SSFT and the ISSFT only hold asymptotically in time. Suggestions for further experiments
with arbitrary velocity of the harmonic force and in which also the ISSFT could be observed, are given. In
addition, a nontrivial long-time relation between the ITFT and the ISSFT was discovered, which could be
observed experimentally, especially in the case of a resonant circular motion of the center of the harmonic
force.
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[. INTRODUCTION molecular solvent. This system differs in an important aspect
from the many particle systems in the phase space consider-
Fluctuations of physical properties of statistical mechani-ations. This is due to the fact that ttreesoscopicBrownian

cal systems were first considered, in the modern context ddarticle is much heavier than the surrounding fluid particles,
dynamical Hamiltonian or dissipative systems theory, bywhich makes it tractable in a different, much simpler though
Evans, Cohen, and Morriga]. It concerned here the statis- approximate, way from the full dynamical systems treatment
tics of phase space contraction or entropy production flucl? Phase space mentioned above. In fact, the treatment gen-
tuations over a certain time interval. In particular, the prob-erally applied to such systems is via a Langevin equation for
abilities for equal positive or negative entropy productionthe stochastic motion of the Brownian particle in a medium
fluctuations of a certain magnitude were considered. Twdh real space, which is characterized only by its friction with
different physical situations have been treated. First, in Refthe particle and its temperature. As a consequence, the very
[1], for a nonequilibrium stationary state, possibly far from complicated many particle problem can be treated by a single
equilibrium, the fluctuations of the dissipativeiscous part ~ Particle Langevin equation, if it is near equilibrium and on
of the pressure tensor of a fluid were studied. Next, Evan§he level of irreversible thermodynamifs0]. .
and Searlef2] studied the fluctuations of entropy production ~ However, for the investigation of the fluctuation theo-
in an ensemble of phase space trajectories emanating from &ms, an additional difficulty is that the experiment consid-
initial equilibrium state in the course of time. While the first €red here, uses a time dependent force on the particle, since
case concerned a study of stationary state fluctuations in trd1€ Langevin equation contains a laser-induced harmonic
jectory segments of a given duration along a single trajectorjorce on the particle, where the position of the minimum of
in a nonequilibrium stationary state and will be called thethe harmonic potential changes in time. As a consequence,
stationary state fluctuation theorel®SFT), the second case the treatments in Ref$6] and[7] do not directly apply to
involved a study of an ensemble of many transient phaséhis experiment.

space trajectories each over a timeall emanating from an Furthermore, the phase space treatments of dynamical
equilibrium ensemble at time=0, which will be called a Systems have always been such tfatleast if the total en-
transient fluctuation theoreTFT). ergy of the system is kept constarthe total phase space

Mathematical proofs have been given for both theoremg&ontraction can be directly related to the total entropy pro-
[2-5] and many computer simulations have confirmed bottfluction of the system. This has led to the TEZI5] and the
theorems(e.g., [1,2,5)). While the original proofs of both SSFT[1,3,4 for the entropy production. To be sure, this
FT's were based on the deterministic dynamics of many parconnection between phase space contraction and entropy
ticles, later proofs for systems with stochastic dynamics wer®roduction can only be made if the total work done on the
given by Kurchan[6] and Lebowitz, and Spohf7]. Only ~ System is purely dissipative. However, in the Waeigal.
one laboratory experiment had been carried out for the SSF§*Periment, this is not so. _

[8] and none for the TET, until recently by Waeg al. [9]. t'l;o see this, it is useful tq c0n3|_der the totabt) work

All deterministic theories were concerned with systems inW;”" done on the system during a time
phase space consisting of many particles. The experiment of
Wang et al. was carried out for a single Brownian particle
whic_h was d_ragged by means of a uniformly moving ha_lr- WOt detvf-F(xt,xt*), 0
monic potential generated by a laser through a many particle 0
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where >, ,—over time intervalst and constructed from that the
probability distribution functionP(W,), which they found
F(xe . Xt ) = —K(x—X) (2)  satisfies
is the harmonic force exerted on the particle wihthe PW,) 6
position of the particle and; the position of the minimum P(—W,) e )

of the harmonic potential, ankl the force constant of this

potential. Furthermore, in Edl), v{ =x{ . At t<0, in the  So they established experimentally the validity of a TFT for
Wang experiment, the center of the harmonic potential is athe total work done on the systeryj}\(vt;’t), rather than for
rest atxg =0. At t=0, the harmonic potential is set in motion the entropy production of the system. Strictly speaking,
relative to the fluid with a constant velocity, so thatx{ Wanget al. measured an integrated varigan ITFT) of the
=v*t for t=0 [11]. TFT in Eq. (6), explained in Sec. Il D. A direct transforma-
The crucial question is now what is the dissipative part oftion of the TFT(6) for W, to a TFT for the dimensionless
W which is responsible for the heat or entropy produced irentropy production, which would bBWE", is not obvious,
the system as a result of the friction of the particle with thesinceAU in Eq. (3) fluctuates also.
surrounding fluid. The dissipative part should not include We remark that Mazonka and Jarzyn§kP] studied the
any purely mechanical work. To see haw/®' is related to same system as used in the experiment of Wabgl.
the dissipated work over a time we rewrite the total work theoretically—before the experiment—and derived the TFT
done,WtT"‘ in Eq. (1), as follows: and the SSFT for the total work done on the system, but not
for the entropy productioh13].
ot T . Unaware of Mazonka and Jarzynski’'s work, but in view
Wr Zf dtvy -F(xe,X7) of the experiment of Wangt al., we studied this experiment
0 independently14]. The experiment of Wanegt al. is clearly
T T important for practical purposes, since it involves a general
=- fo dt(vi— Vi) - F(x . x¢ ) + fo dtve-F(x,x;) property of the work done on a system. We discuss the ob-
servability of the work related to TFT as well as SSFT for an

oo . T . arbitrary rather than a uniform motion of the harmonic po-
ka dt(x =Xt ) - (X=X )+f dtve-F(xg, X)) tential. So, for the purpose of treating the experiment and its
0 0 . . . . .
generalizations, in this paper, we too will treat the TFT and
=AU+WE", (3)  SSFT for the dimensionless work, with a focus on the feasi-
bility to do a convincing SSFT experiment. To the best of our
defining AU=(K/2)[|Ax,|2—|Axo|2] with Axe=x—x*, knowledge, no fluctuation theorem fentropy production

either an integrated transient fluctuation theor@®FT) or
an integrated stationary state fluctuation theor@8SFT),
- has been derived for a Wang-type system, neither from a
W?’EJ dtve- F(Xe X7 ). (4) phase space perspective nor in real spai a Langevin
0 equation.
The outline of the paper is as follows. In Sec. II, we
Here,W2" is the work done on the Brownig®r) particle by ~ present our Langevin model and we develop the general
the harmonic force. Agat least ideally the Brownian par- theory for the verification and the experimental observability
ticle has no internal energy, all this work is converted intoof the work related fluctuation theorems, and discuss an in-
heat, which is the source of the entropy production. Henceteresting relation between the fluctuations in the transient
WE" is the dissipated work. On the other hand, the térh  and in the stationary state. In Sec. Ill, we specialize the gen-
in Eq. (3) represents the purely mechanicdtenter of  eral theory to the case of a linear and a circular motion of the
mass”) work done on the particle in the external harmonicminimum of the harmonic potential, investigating in detail
potential. the observability of the ITFT and the ISSFT. In Sec. IV, we
Therefore, the entropy production of Waegal. during  end with a discussion.
time 7, denoted by . in Ref.[9], is really the total dimen-
sionless work done on the system, and we will denoted it by

and

Il. THEORY

A. Definition of the model

WT=BW§°t=Bf dtvy - F(x,x), 5 Lo : .
0 Like in the experiment of Wang, the model we consider

has a spherical Brownian particle in three dimensions with a
where3=1/(kgT), kg is the Boltzmann’s constant, arfdis radiusR and massn in a fluid with viscosityn and tempera-
the temperature of the surrounding fluid. By following the ture T and the Brownian particle is subject to an external
position of many, independent Brownian particles and usingiarmonic potential with a time dependent positign of its
Egs. (2) and (5), Wang et al. measured this dimensionless minimum. Fort<0, the minimum of the harmonic potential
work W,—or what they called the entropy production is at the origin,x{ =0, whereas fot>0, it moves with a
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velocity v , which can be, in principle, an arbitrary function
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Xe=X— Yt (16)

of time. The equations of motion for the particle are then of

the Langevin type:
).(t:Vt y (76)
mv,= — av;— k(X —x¥)+ ¢, (7b)

wherex; andv; are the position and velocity of the Brownian

particle, respectively. In this equation, the Brownian particle

feels three forces. The first force is the drag foreevv,,
with, according to Stokes’ law,

8

The second force is due to the harmonic poterjsae Eq.
(2)]. The third and last force is a random for&g which is
taken to be Gaussian and delta correlated in time:

(L=0; (Lils)=2kgTad(t—s). €)

The strength of the random force in E®) is such that the
equilibrium distribution functiomeq for x andyv,

a=6m7yR.

Jkm\?
feq(x,v)=<’82—w) e—ﬁ[(1/2)m\v|2+(1/2)k|x\2], (10)

is stationary under the equations of motion E@s) and(7b)
[15].

The system will only be considered in the strongly over-
damped case

mk< a?. (12

This turns the Langevin equatidf2) into the simple form

Xi=—1 Xt a ' (17)
yi follows from the general solution of E¢15):
t
yr=e Umry¥ +7-r’1J dt'e” "/ myk (18)
0

so that withyy =0, and a partial integration, one obtains

*:

t !
y; x{*—J'Odt’e‘(t‘t v, (19

The transformatior{16) with Eq. (19) can be interpreted as
going to a comoving frame, but it is not comoving with the
minimum of the harmonic potential, but wityf which is
what the motion of a particle starting & =0 would be if
there would be no noise term in the Langevin equafiti).
Equation(17) shows that in the comoving frame, one has
the standard Ornstein-Uhlenbeck procgss,16. Its solu-
tions are well known. The Green’s function of the Ornstein-
Uhlenbeck process, which gives the probability for the par-
ticle to be atX; at timet,, given that it was aX, at timetg,
is Gaussian in botlXy and X . Its stationary solution is of
the form peq(X), with pgq given in Eq.(14). Initially the
particle is distributed according to E¢lL4), but becaus&
=Xo (Y5 =0), one sees that the initial distribution is already
the stationary one, and in this special, comoving coordinate

Effectively, therefore, the mass can be seen as a small pgzme, the distribution of the Brownian particle has an equi-

rameter and will be set equal to zerb5]. From Egs.(7a)
and(7b), we find then a simplified Langevin equation for the
position of the particle only,

x=— 1 (X=X +a 1, (12)

with a relaxation time

13

o
T,=E.
When we only usex;, the equilibrium distribution in Eg.
(10) reduces to

PedX)= f dvfeq(X,V) = (KBI27) 32~ A2 (14)

It is convenient to separate the average motion of th
Brownian particle (which results from the deterministic
forces along from the stochastic motion. The average mo-
tion is given by the solutiory; of the deterministic part of
the Langevin equatiofil2), i.e., by

ok

Yo = (15

=7 Y X,
with initial conditionyg =0. We can then look at the devia-
tions from this average motion by introducing the transfor-
mation

librium distribution for all time:

P(X,t)=(Bk/2m)3%e Ak2IXI?, (20)
We end this section by writingV, in Eq. (5) in terms of
Xty

W, (21

—kg | A X o X0
0

B. Transient fluctuation theorem for the total work

In Eq.(21), W, is a linear function oX;. Combined with
the Gaussian nature both of the Green’s function of the
Ornstein-Uhlenbeck proce$Eq. (17)] and of the initial dis-
tribution [Eg. (20)], this means that the distributid®; of W,

fs Gaussian,

e~ [W,~M(n)]%2V(7)
N2mV1(T)

where the subscripf denotes that the transient case is con-
sidered. The meai ; of W_ is, from Eq.(21),

PT(WT) =

(22

MT(T)=—kﬂfordtvf-(yf—xf), 23)
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since(X;)=0 [Eq. (20)]. Using the expression foii in Eq.  physical parameters are measured, so that they would still

(19), this can be also written as depend on time. Only when these parameters have become
, stationary can one say that the system is stationary.
M-( T)zk,BjTdtéftzdtie*(téfti)’Trvf,-vf,. (24) The SSFT was originallly formulateq for the average en-
0 0 2 1 tropy production fluctuations on trajectory segments of

) ) ] ~length7 along a single trajectory in the stationary state. Here

The varianceVt of W_ is only affected by the first term in e consider the statistics of the total work done on the sys-
Eqg. (21), so that tem over timer, divided bykgT,
V(1) =((W,—(W,))?) ti+r

WTzﬁf dtvy - F(X,X{), (32

T ’ t:

=2k?p? f . dt, f C:zdtiv;z- (XyXu)- vf1 , (25 '

for a sequence of initial times of segments, all of length,

where we used the symmetry of the time-correlation functiorflong a single stationary state trajectory=(L,2,3 ...). To

(X¢Xy) under interchange of; andt). To calculate this g€t the distribution ofV; of the segments along a trajectory,
2.1 we use the following reasoning. According to the E(®.

function, notice thaX; has a stationary distribution so it can S .

; | . (for the force and(16) (the definition ofX), the expression
be written as(X,;_1;Xo). Using the formal solution of the ;. Eq. (32) is linear inX; (just as in the transient casand
Langevin equation in the comoving franiBqg. (17)] for t  [as X, obeys the Langevin equatiofl7)] we still have a
>0, Gaussian Green'’s function and a Gaussian stationary state, so
that the distribution ofV, for each { is again Gaussian:

t
X,=e V7X +a_1f dt'e” /g, (26)
' 0 0 X o W~ M (91212V, ()

V2V ()

with the mean and the variance given by, respectively,

o Py (W)= (33)
one obtains with ({;/)=0, (Xg)=0, ({Xe)=0, and
(XoXo)=[kB17'1,

(XXo)=[Bk] e Vml. (27

li T
The variance in Eq(25) then becomes M, (7)= _kﬁf . dtvy - (yF —x¥), (34)
I ti
V( 7-)=2ka dtéftzdtie‘(té“i)”rvf,-v:‘,. (28 s ¥
o e ° vt_(r)=2kﬂf dtéJ 2dtyv - vie (i (35)
! ) ) 2 1
Comparing with the mean in Eg24), we see f f
V(1) =2M(7). (299 We assume that for sufficiently larde, M, and Vi will
_ _ _ _ reach steady state valué¢see Sec. Ill for examplgsand
This relation leads straightforwardly to the TFT. Given thebecome independent of If in addition, the correlation be-
distribution function ofW_. in Eq. (22), one easily shows that tween different segment$t(,t; + 7] and[t; ,t;+ 7], say de-
cays sufficiently fastwhen|t;—t;| gets largey, then the dis-

M:eZMT(T)WTIVT(T), (30)  tribution of W along a trajectory in the stationary state is
Pr(=W.) given by
which, by Eq.(29), becomes e~ [W,~Mg(n]%/2vg(7)
Ps(W,)= (36)
Pr(W,) — eV, 31) N2mVg(T)
PT(_W’T)
o . . Here the subscrip® denotes that this distribution refers to
which is identical to the TFT in Eq6). the distribution of W_ over segments along the stationary
state trajectory. The meavigis, from Eq.(34) and using Eq.
C. Stationary state fluctuation theorem for the total work (19), given by
To move on to the SSFT, it is necessary to clarify what the trr v o
stationary state means, since in teoordinate system, the Mg(7)=Ilim k/.-.’f dtéf 2dt1e—(tz—t1)/rr\,:‘,.\,:‘,,
distribution is stationary, which would suggest that the TFT t—o t 0 z 1
is also the SSFT. This is not the case. If one defines a sta- (37)

tionary state as that state in whiébn averaggthe physical ) ) ) )

(macroscopig parameters do not change, then the time-While the variance/s is, from Eq.(35), given by
independence of the distribution ¥fis not enough because o )

X involves,_through its definition Eq16), atime_—dependent Ve(7)=lim Zkﬁj dtéftZdtie—(té—ti)/rrV;k,.V:f,. (38)
transformation from the laboratory frame, in which the t—oo t t 2 1
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Note that in the inner most integral in the expression for thewvhere the left-hand side is the quotient of the probabilities to
mean in Eq.(37), the lower bound extends to time zero, see a negative, respectively, a positive total watkafter a
whereas in the expression for the variance in B§), it  time 7,

extends ta. This is the origin of the fact tha¢s and 2M ¢ 0

are not identicalwhile Vy=2M1, Eq. (29)]. The deviation Pr(W.< O)EJ dW.P+(W,), (45b)

can be characterized by -

2M(7)—Vg(7) P7(W;>0)=1-P(W;<0), (450

e(7)= 2Mo(7) (39 and the right-hand side of E¢45a is the average of exp
(=W,) over positiveW_, i.e.,
Using this definition and Eq.36), one sees that o
f dW,Pr(W,)e V-
Ps(W W —W\ + 0
s(=W)) —&(7) J’ dW,P+(W,)
0
This means that provided ) i
The ITFT of Eq.(459 can be derived from the TFT in Eq.
g(r)—>0 as 7o, 41) (3D by first rewriting Pr(W,<0)=f° .dW, Pr(W,) as
0 0
we have f dWTPT(WT)=f dW,P(—W,)e"-
VS( T)HZMS(T) as 7—®, (42) o0
= f dW,P(W,)e™ s, (46)
and the SSFT holds: 0
Py(W.) and then dividing byP+(W_>0).
S W a5 7o, (43 An ISSFT can also be derived, but it is a little more
Ps(—=W,) subtle. Thereto, one has to consider whether
Of course, for any given? , Eq.(41) can be tested, but PS(WT<0)T;’°°<87WT>+ (473
how general can we expect it to be satisfied? We write P<(W, >0) S
thereto Eq.(39) with Egs.(37) and(38) as holds, where
. t+7 , t % * 7(t'7t')/r 0
imkp | dty | div;-vpe tzml PS(W,<0)= f dW,P5(W,), (47
t—o —o0
e(r)=
Ms(7) P{(W,>0)=1—Pg(W,<0), (479
lim KB(x: —y¥) f dtpe 2", and
t—o 0 2 -
- Mo(7) @4 f L AWP(W e
(e"e=—7 (47d
where Eq.(19) has been used. Here, the denominator is the J dW,Pg(W,)
total work done of the system in the stationary state in time 0

7. If we are not in equilibrium, this is positive and grows
with 7. In the numerator, the exponential in the integral will
make the integral bounded for large provided that/; does
not grow exponentially in time with an exponent bigger than
7, 1. Thene will become zerox 1/7 asT approaches infinity,
and the SSFT in Eq43) holds.

To start the derivation of the ISSFT of E@.73), the numera-
tor of Eq. (470 is rewritten, using Eq(40), as

f dW,Pg(W,)e "
0

” e(1)W,
= f dW,Pg(—W,)ex
D. Integrated fluctuation theorems 0 1-e(7)
In experiments such as done by Waatal.[9], it is easier 0 ()W,
to check an integrated fluctuation theorgh], because it is = f_ dW, Pg(W,)exp — 1—e(r)

easier to obtain then good statistics for the required quanti-
ties. The integrated transient fluctuation theorem reads

P-(W,<0)
PT( WT> 0)

] WM e
_fO i Vg 1os(n
- V2V 1) ,

=(e™")7, (453 (48)
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where Eq.(36) was used. We saw that the SSFT holds if [1-28(r)]M(7)
—0 for larger. Consider the exponent in EG8). Writing 1—erf
out the square, this has a term lineaMif) of the form (M) V2V(7)
Rg(T)=¢ s M) , (53
Mg(7) (1) ~ Mg(7) 1+erf| >0
Von  1-e(n| V™ Vg(n 17 28(MIW: (49 V2Vy(7)

As 7—o, we can neglect compared to one. Since this is Which shows that only for—=, Ls=Rg, i.e., that the work
the only place where occurs, we can set equal to zero on  related ISSFT holds.

the right-hand side of Eq48), which then becomeB(W.,

<0). Dividing by P(W,>0) on both sides in Eq48) now E. Transient fluctuations versus stationary fluctuations
yields the ISSFT in Eq473.

For the purpose of the investigation of the observability of
the fluctuation theorems, discussed in Sec. lll, we end thi
section by giving the explicit forms of the left- and right-
hand sides of the integrated fluctuation theorems Etfa
and (473. Defining

An interesting relation can be derived for the ratio of the
robability of a negative total work and that of a positive
ne, for the transient cader and the stationary cades.

Using Egs.(51a8—(510 and the asymptotic expansion of the
error function,

2
P+(W,<0) W _,_% -1 -2
L+(7)= P (W.0) Rr(n)=(e"")7, (508 erfx)=1 Jr [+ O0D)], 54
Ps(W:<0) s one obtains
Ls(n=s—F7—~, Rs(n=(e"")g, (50b
Ps(W:>0) L ViMs 2
T\ LIS e MV + MYV (5
the TFT states thdtt=Ry, and the SSFT thdts=Rg (the Ls VsM+
latter for larger only). Using Eqs.(22), (36), and (453, we o )
get the following explicit expressions: Here theO(x™ ) in Eq. (54) could be neglected. This, be-
cause wherr—, M andMg [Egs. (24) and(37), respec-
L+(7)=R+(7), (518 tively] will both grow linearly in time,M~Mg~O(7) and
similarly V:~Vs~O(7) [by Egs.(29) and(42)], so that the
1—erf M+(7) arguments of the error functions in Eg&1b) and (510
T ' !
V2V1(7) become large  \/7) for large 7. In fact, Mg and M1 will
Re(7)= : (51b  grow with the same coefficient, as the rate of work done on
1+erf M+(7) the system will become stationary, but they will in general
V2V1(7) have a bounded difference, i.8l,s— M;~O(1), aswill Vg
andVy, i.e.,,Vs—V1~0O(1). One, therefore, has, using Egs.
1 ; Mg(7) (29) and (42), an asymptotic behavior
—effl ———
Le(r)= V2Vs(7) (519 M(7)—wr+ay, Vi(7)—2wr+2ay,
M 1
1+ erf % Mg(7)—wW7r+a,, Vg(7)—2w7r+as, (56)
s\ T
for 7—o0, where thea; are independent of. wis in fact the
. Vg(7)=Mg(7) asymptotic rate at which work is supplied to the system, i.e.,
1-er 2V(7) the consumed power. By expanding in terms af, Mie ob-

Rg(7)=eVs(n2=Ms(7) . tain for the exponent in Eq(55) : —[M3(7)/2V(7)]
1+erf( Ms(7) ) +[M4(7)/2Vg(7)]= — (1d)as + (1/2)a,— (1/8)ag, ie., it
V2Vg(7) approaches a nonzero constant. The prefactor (& .can

(510 similarly be shown to go to one as-, so that we have for

large 7,
We can simplify the expressions far; and Ry using the J
relation betweerM andV+ in Eq. (29): L(7 T;we—(1/4)a1+(1/2)az—(1/8)a3
1 Ls(7)
Lo M Ms(7)~Mi(r) V()= Vi(7)
Le() = — . (52 =exp[ R L
1+erfl E\/MT(T))
where Eq(56) has been used to re-express this ratio in terms
In order to demonstrate the difference betwéenand Rg, of the means and variances of the transient, respectively, sta-
we rewrite Eq.(51d), using Eq.(39), in terms ofe as tionary state. Because the right-hand side of &4) is not
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equal to one in general, this shows that the ISSFT is not just @ ®
the limit of the ITFT for larger. ! N N o
08 | Ry —------ 0.8 | - -
06 r-"\ Lg - ] 06 _\\ Ly e |
IIl. APPLICATIONS TN 1 YN :
In this section, two kinds of motion are considered for the 0"2, e 0,2, e
harmonic potential. In both cases, parameters will be varied o o2 o5 o5 1 o om o5 om 1
to see under what conditions an experiment would be able to 1 ®

demonstrate the integrated work fluctuation theorébuth
transient and stationarynost convincingly. The motion that
will be considered first, corresponds to the situation in the
experiment of Wangt al,, i.e., it is a uniform linear motion.
The other is a circular motion and might be implemented in
a future experiment. Both approach a stationary state.

A. Linear motion of the harmonic potential

The particular case considered here is a linearly moving F'IG- 1 I_ntegr;]rated f'UCtuatiO_’;Lthngem? ‘I;Of th‘le wol;k f0:j the
harmonic potential, i.ex{ =v,ptx for t=0. The quantities inearly moving harmonic potential.y =Ry [cf. Eq. (51a], Rs an

. . . . . Lg versusr (varying rangeswith (a) 7,=0.5 s andv=12 s'1; (b)
with which to test the work fluctuation theorems, are givenin_"_ 5 ¢ andv=4.8 st (c) 7,=0.08 s andv=1.92 s % and(d)

Eq?- (518—(51d. The iny unknowns are the mea_ms and T:=0.032 s andv=0.768 s (in the last case, the curves bf-
variances of the transient and stationary distributions and. R, andRs are indistinguishable

these are given by Eq&4), (29), (37), and(38). If we insert

vy, yvhich _is a constamiopp? here, into these equations, we cording to Eq(8), « is of the order of 5 10~ kg/s. Withk
obtain straightforwardly of the order of 107 kgs™?, 7, becomes of the order of 0.5 s

M(7)=w{r—7[1—e 77}, (588  [EQ.(13)]. Furthermore, taking the temperature to be 300 K,
gives B of the order of 2.4 10°° kg n?s™ 2, and withv
Vi(7)=2M+(7), (58D of the order of 1lum/s, we find from Eq(58e thatw is of
Mo(7)=wr, (589  the order of 12 sl

For the case thav=12 s'! and 7,=0.5 s, the expres-
Vg(7)=V(r)=2w{r—7[1—e 77}, (58d) sions in Eqs(51a8—(51d using Eqs(58a—(58d), are plotted
together in Fig. (). It is striking that even though we know
where that the ISSFT holds for sufficiently large this is not at all
W= anipt, (589  observed in the figure: the curves bf and Rs are com-
pletely different; in fact, the curve fdrg is indistinguishable
which can be interpreted according to E§8¢ as the work from the 7 axis. Furthermore, both of these curves are dif-
delivered to the system per unit time. The equality betweerierent fromL, which, given the result in Eq57) of Sec.
Vs and V+ in Eq. (580 follows because the velocity of the Il E, is less of a surprise. Clearly, the range mofor which
center of the harmonic potentigf is constant, so that the the ISSFT is valid lies beyond the point where bathand
integrands in Eqs(28) and (38) only depend on the differ- Rs have relaxed to zero in Fig(d). This means thafor the
encet,—t], and the shift ovet in the definition ofVgis  Parameters typical of the Wang experiment, the ISSFT can-
irrelevant. For this case, Eq&8a—(58d) were already de- Not be observedn contrast to the ITFT, as the curve bbf
rived by Mazonka and Jarzynski in R¢1.2]. can be seen clearly, and; equalsRy, so that the ITFT
By the theory presented in the Sec. Il, the TFT holds forcould be observed.

any motion of the harmonic potential, hence also in this case The reason that there is such a big difference in the signal
Lt=R;. The SSFT holds ife [Eq. (39)] vanishes asr  for the transient and the stationary case, i.e., that the negative

— o0, and this is so here, since work fluctuations are more suppressedLigithan inLy, is
. the following. SinceM +(0)=0 [Eq. (23)] in the argument of
n[1—-e 77] (59) the error functions in Eq52), Lt(7=0)=1. As the function
T ' L+ decays with increasing, the question of whether it can
be observed depends on whether it does not decay too
We now discuss the observability of the work related ITFTquickly. On the other hand, the argument of the error func-
and the ISSFT for this model. There are only two relevantjgn in Eq. (510, Ms/+2Vs does not have a limit of zero for

parameters for the fluctuation theorems here, the relaxation .o |n fact, using Eqs(58¢ and(58d) and expanding i,
time 7, [Eq. (13)] and the rate of dimensionless work dome  gpe finds

[Eq. (586]. To obtain realistic values for these parameters,
orders of magnitude of various quantities can be taken from

e(1)=

Ref. [9]. With the radiusR of the order of 3um, and the |imMS—(7): wr,/2, (60)
viscosity of waters of the order of 10° kgm 1s™1, ac- 7-0V2Vg(T)
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which can be large. So with E¢510), one has forr—0 Taking 7,=0.2' s andw=4.8 s, we plottedL; and Lg
logarithmically in Fig. 2 to illustrate Eq62). Equation(62)
L(0)= 1—erf(\wr,/2) 61) shows once more that negative fluctuations of the work are
S 1+ erf( \/W) . :)neor:gdsuppressed in the stationary state than in the transient

For the case plotted in Fig.(d, Jwr/2=3, so that
Ls(0)=7x10"3. No wonder we cannot see it in Fig(al
L is exponentially suppressed for large valuesvof,, In the case of a circular motion of the harmonic potential,
which is the average work done in the stationary state duringve write
a relaxation timer, . As W_=0 for 7=0 for all trajectories,
it follows from definition (50b) that Rg(0)=1. Comparing
this value with the value ot ¢(0) [Eqg. (61)], we see that : .
there is no chance to observe the SSFT if the work don«E\Or t=0. We use th*e same procedure as in the previous case,
during 7, is too large. le., we determingr,
r

Thus in order to observe the SSFT, we have to reduce the V¥ =rQ{cog Q)X+ sin(Qt)y}, (64)
work done in the timer, . One direct way to do this is to
change the particle’s radius. From E¢8) and(13), we see  for t=0; insert this into Eqs(24), (37), and(38); and obtain
that 7.«R, whereas from Eq(58¢), w=R as well, sowr,  straightforwardly
«R2. Another way would be to reduce the velocity of the
harmonic potential, which does not affert, but changes 207, sinQr)e” ™

B. Circular motion of the harmonic potential

X =r{sin(Qt)x+[1—cog Qt)]y}, (63)

wocvgpt. Choosing to work with the radius as the control Mr(r)=wi 7= 1+0272
parameter(partly because smaller particles than used in the
Wang experiment are commercially availablee plotted in [1-0%72][1—cogQr)e” 7]
Figs. 1b)—1(d), what happens when we make the particle -7 > , (653
2.5 times smaller consecutively, thus reducing the work done 1+0%7
per rela>§ation time each time by a factor 6.25. In first in- Vi(7)=2M(7), (65b)
stancqFigs. 1b) and Xc)], the curve ol g gets closer to the
curve Ry, andLg starts to get visible. But only in the last Mg(T)=wr, (650
graph, Fig. 1d, where the particle’s diameter is about 15
times smaller than in Fig. (& (which would meanR Vs(7)=V1(7)=2M+(7), (650
~200 nm in the Wang experimento we clearly see thatg where now
approache®s. In this casewr,~0.02, confirming that the
work done in7, needs to be small to see a convincing signal afr2Q?
of the ISSFT. W= ——-. (656
Finally, we look at Eq(57), which says that in the long 1+0%7
I(Ené;i?%gt:ﬁ ?gé%igg!‘égg;?rpee;di constant. Using Egs. The expression foe follows using its definition Eq(39):
LT( ’7') — . H —7l7,
e (62 TR
. . ' +[1-Q27|[1-cogQrje "]}, (66)
Z — which again vanishes like 2ivhen7—oo, so that the ISSFT
e holds, i.e.,Ls=Rg for large 7.
o1k '\"\\_ 3 Note that the Eqs(659—(656¢ and (66) reproduce the
T - Egs. (589—(58¢ and (59) in the limit for ) —0, keeping
T - vope=r{) constant. But these equations are not just an exten-
0.01 ¢ T, - 3 sion of the linear case. Under thesonancecondition Q) 7,
T - =1, & in Eq. (66) becomes
0 1 2 3 i
©® s(7)=Me‘”", (67)

FIG. 2. lllustration of the relation between transient and station-, . . o
ary work fluctuationgEq. (57)], for the linearly moving harmonic |-, it decays exponentially, rather tharl/7 (which it does
potential.L andLg are plotted logarithmically as a function of for all other choices of). In addition, in the resonance case

with 7,=0.2 s andwv=4.8 s ! [cf. Fig. 1(b)]. The constant ratio in € IS zero at tim?$17TTr forn=123..., andexponentially
Eq. (57) becomes a constant distance between the curves in thismall (~e~"") in between; consequently, at these tines,
logarithmic plot. and Rg are equal[Egs. (510 and (53)], whereas they are
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increases the fluctuatio®®,. On the basis of the foregoing,

0s I\ L=k — j we see that in order to demonstrate the ISSFT, it helps to go
I - to a resonant circular motion.

IV. DISCUSSION

0 025 05 075 1
()

(1) Inspired by the experiment of Wargg al. [9] which
showed that the work related ITFT holds when a small latex
bead is dragged linearly through a fluid by means of a laser-
induced harmonic force, a model of a Brownian particle in a
harmonic potential with an arbitrarily moving minimum was
used to study both the work related ITFT and ISSFT, under
more general conditions. From the Langevin equation that
describes the motion of the Brownian patrticle in this simple
model, everything can be explicitly calculated. As expected,
the work related TFT holds for all time, as does its integrated

FIG. 3. Integrated fluctuation theorems for the work for the variant ITFT. The work related SSFT and its integrated ver-
circular motionLt= Ry [cf. Eq.(518], Ls andRg versusr with (a) sion ISSFT hold for sufficiently large times provided a sta-
7,=0.2 s,w=4.8 s'! [as in Fig. 1b)] at resonanc€ =1/r, ; (b) tionary state exists.
samer, andw butQ=5/r, ; (c) 7,=0.08 s,w=1.92 s! [as in Fig. We also found an interesting relation between the work
1(c)] at resonance)=1/7, (where Rg is indistinguishable from related ISSFT and ITFT. If one looks at the ratios for the
Lt+=Ry); and(d) samer, andw but ) =5/7,. Note thatin(@) and  probability to find in a timer a negative versus a positive
(c) beyond a timer, , all curves become indistinguishable. work done on the system, in the transient stafeand in the

stationary stateLs, then Li/Lg approaches a constant
exponentially close in between. This means that the ISSF{which is not ong as 7—, given by Eq.(57).
holds and can be visible at much shorter time scales than in (2) We have not found many choices for the motion of the
the linear case. harmonic potentiak{ for which a stationary state exisfim

In Fig. 3,Lt=Ry, Ls andRs from Egs.(518—(51d are  {he sense that the limits of Eq&7) and(38) existl. There is
shown for two cases, which fd2=0 become identical t0 the |inear motion corresponding to the Waagal. experi-
Figs. 1(b) and Xc). For these cases we show what happens afnent, which has been worked out in Sec. Il A, and there is
their respective resonance poiits= 1/, and what happens the possibility of a circular motion treated in Sec. Il B, as
when(} is larger, 5f; . In varying the frequency, we kee&p  \ye|| as a spiral motion, which is a trivial superposition of the
fixed, which physically means we would have to adjust previous two. However, any motion which in the course of
according to Eq(65e. time approaches one of these cases, will also reach a station-

From Fig. 3a), we see that at the resonant poilt  gary state, corresponding to that case. In contrast to the simple
=1/, while Ls could not be seen in t@~0 cas€cf. Fig.  motion of the harmonic potential considered in Sec. lIl, al-
1(b)], it can now be seen, but is still too small compared tojowing for an arbitrary motion of the harmonic potential,
Rs to check the SSFT. If o =0 the value ofLgs could be  may give rise tqarbitrarily) different fluctuations in the tran-
seen[Fig. 1(c)], then going to the resonance, improves thesjent and the stationary cases.
situation: in Fig. &), Ls andRg approach each other after a  (3) We note that on the basis of our explicit calculations,
far shorter time than in Fig.(2), and become indistinguish- e are able to explore under what conditions the work re-
able afterr= w7, , because of the exponentially small differ- |ated ITFT and ISSFT might be observable, which is relevant
ence between them as discussed above. We remark that whgjp the devise of future experiments.
the agreement is already good in te-0 casdlike in Fig. For the ITFT, which holds for all time, observability is
1(d)], going to the resonance changes little. Furthermore, w@urely a matter of how fast the quantity; decays: if it
see from Fig. 3 that going beyond the resonarRe=G/7;)  decays too fast, the ITFT will not be measurable. We showed
will cause the curves to deviate from each other again. Wehat if one inserts values taken from the Wang experirf@ht
also note that above resonance, the work fluctuations in thigito the explicit expression df 1, the ITFT shows a clear
stationary state are larger than those in the transient cassignal that decays on the order of a second, consistent with
which is the opposite as for the linear motion. In fact, thethe fact that the ITFT could be observed in that experiment.
form Eq. (57), takes here igusing Egs.(65a, (65b), and  The relaxation time, i.e.7,, however is off; the relaxation

T(s)

(650] time found in the experiment is of the order of 1-2 s,
- 22 whereas the value of the harmonic force constant and the

Lr(7) = ex 1-0°7 a3 (68) application of Stokes’ Law give a relaxation time of 0.5 s.
Lg(7) 1+0272) 2 )’ This could be due to boundary effects, local heating due to

the laser, deviations from the harmonic nature of the laser-
for r—o. The exponent changes sign going frélm, <1 to  induced force.
QO 7,>1. What is happening physically is that the system is The fact that the ITFT can be observed does not imply
driven so fast that it cannot relax within one cycle. Thisthat the ISSFT can be observed. In fact, problems with ob-
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servability arise when we insert values taken from the Wangeters taken from the Wargg al. experimenk. One could also
experimen{9] into the quantities for the ISSFT: the signal of consider the case of anharmonic rather than harmonic poten-
Lsis then too small because the work done on the system itials. On a practical level, is seems plausible that the theory
a relaxation time is too large. There are a few ways to im-could be applied to other systems, such as linear electrical
prove this situation, i.e., to make the ISSFT observable in awircuits and could be particularly relevant to nanotechnology.
experiment: first, one can take a smaller particle, or second, On a more fundamental level, one could ask what the
make the velocity with which it moves through the fluid precise relation is of the work fluctuation theoreffor
smaller. Both methods reduce the work done in a relaxatioBW'®") discussed here and the usual entropy production
time 7, . If the diameter of the particle is reduced to about 16theorems(for ,BW?r) for dynamical and stochastic systems
times smaller than the original ortehich means about 400 [3-7]. While the work fluctuation theorems hold for all
nm acrosk we see that the ISSFT can indeed be observedclasses of systems considered so far, this appears not to be
The circular motion that we investigated offers a thirdthe case for the entropy production theorems. In a future
possibility to improve the observability of the ISSFT: Under pyplication, we intend to discuss this question in detail, since
resonance conditions(Xr,=1), the deviations from the the theory needed for this deviates too much from the present
ISSFT become exponentially small after a time, . one to be included it in this paper. We can state, however,
(4) We end by giving some issues that are open for futur@hat for the models considered here, such a theory indicates
investigation. Some possible extensions of the theory coulghat while an SSFT for the entropy production, i.e., for
be the following. The theory developed here is for the overgWB" | appears to hold for long times as usual, the TFT for
damped case only. One might wonder if there is ever anyhe entropy production seems to hdtt long times onlyas

practical need to consider the situation where the damping ige|| [18], and not as an identity for all times, as would be
not so large. That would mean the theory would start with gxpected19].

Langevin equation of motion for andv, or a Kramers equa-
tion. We have carried out such calculations for the case of a
linear motion of the harmonic potential and found the same
results as reported here. In the case of the circular motion,
this would also allow a more precise discussion of the role of This work has been supported by the Office of Basic En-
the centrifugal force(due to ), which a rough estimate gineering Science of the U.S. Department of Energy, under
limits to Q<<a/m (this is of the order of 1DHz for param-  Grant No. DE-FG-02-88-ER13847.
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