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Extension of the Fluctuation Theorem
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Heat fluctuations are studied in a dissipative system with both deterministic and stochastic
components for a simple model: a Brownian particle dragged through water by a moving potential.
An extension of the stationary state fluctuation theorem is derived. For infinite time, this reduces to the
conventional fluctuation theorem only for small fluctuations; for large fluctuations, it gives a much
larger ratio of the probabilities of the particle to absorb rather than supply heat. This persists for finite
times and should be observable in experiments similar to a recent one carried out by Wang et al.
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the system fixed. This damping term is a mechanical
expression for what in reality is an external thermostat.

are both Gaussian in xt. The work is the total amount of
energy put into the system in a time �. This is a fluctuating
There is a lack of unifying principles in nonequili-
brium statistical mechanics, compared to the equilibrium
case. So it is not surprising that the fluctuation theorem
has received a lot of attention, as it gives a property of
fluctuations of entropy production for a large class of
systems, possibly arbitrarily far from equilibrium [1–10].

Here, we prefer to use the term heat rather than entropy
production, so that the conventional stationary state fluc-
tuation theorem (SSFT) [11] states that the probability
P��Q�� to find a value of Q� for the amount of heat
dissipated in a time interval � satisfies, in a nonequili-
brium stationary state [1,3],

P��Q��

P���Q��
� e�Q�; (1)

where � indicates the behavior for large �. Here � �
�kBT��1, with kB Boltzmann’s constant and T the (effec-
tive) temperature of the system. In contrast, the transient
fluctuation theorem (TFT) considers fluctuations Q� in
time, when the system is initially in equilibrium [2].
These theorems were first demonstrated in (isoenergetic)
deterministic many particle systems in an external field
[1–3], but later in stochastic systems as well [4,5].

In contrast to our formulation in terms of heat, in the
literature, Eq. (1) is interpreted as a theorem for fluctua-
tions of entropy production far from equilibrium, by
identifying Q�=T as a (generalized) entropy production.
Furthermore, the fluctuation theorem holds for arbitrary
values of Q�, i.e., also far from its average. Hence, it is
often referred to as a large deviation theorem.

Recently, a laboratory experiment was carried out by
Wang et al. [8]. They measured fluctuations in the work
done on a system in a transient state of a Brownian
particle in water, subject to a moving, confining potential.
The TFT for work fluctuations was confirmed.

In the deterministic models, dissipation is often mod-
eled by including a damping term in the equations of
motion, chosen such as to keep, e.g., the total energy of
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Any work done by the external field on the system is
absorbed by this ‘‘internal’’ thermostat. Therefore, the
external work done on the system equals the heat dissi-
pated in the system.

While Wang et al. intended to study the entropy pro-
duction (or heat) fluctuations, in fact, the work fluc-
tuations were studied [10]. In contrast to the above
sketched purely deterministic models, work fluctua-
tions differ from heat fluctuations in their system due to
the presence of a confining potential. Thus, some of the
external work done is converted into potential energy
and only the rest is converted into heat. In fact, in this
system the work fluctuations in the stationary state satisfy
the conventional SSFT [10,12], but the heat fluctua-
tions do not, as we shall show. As it turns out, in the
presence of a deterministic together with a stochastic
component, the resulting behavior of the heat fluctuations
coincides with the conventional SSFTonly for a restricted
set of small fluctuations while the behavior is very differ-
ent for larger ones.

We first discuss the work-related fluctuation theorem in
the experiment of Wang et al., which was treated theo-
retically in Refs. [10,12,13]. The Brownian particle in a
fluid, subject to a harmonic potential moving with con-
stant velocity v�, was described by an overdamped
Langevin equation:

dxt

dt
� ��xt � x�

t � � t: (2)

Here, xt is the position of the particle at time t, x�
t � v�t is

the position of the minimum of the harmonic potential at
time t, and t is a fluctuating force with zero mean and a
delta function correlation in time. We remark that the re-
laxation time of the position of the particle has been set
equal to one. Also, we set kBT � 1, so htsi � 2��t� s�
[14]. In Ref. [10], it was shown that Eq. (2) is solvable in a
comoving frame, in which it reduces to a standard
Ornstein-Uhlenbeck process. Thus, the stationary proba-
bility distribution and Green’s function are known, and
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FIG. 1 (color online). Numerically obtained f��p� (bold
dashed line) for v� � 1:5 and � � 1:3, and the (v� independent)
extension of the SSFT for � ! 1 (bold solid line). Also plotted
are the conventional SSFT (thin solid line), and the numeri-
cally obtained distribution function P��pw��, scaled by its
value at zero (thin dashed line).
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quantity, given by [15]

W� 
 v� �
Z �

0
���xt � x�

t �dt: (3)

Here, the time t � 0 denotes the initial time of an interval
of length � in the stationary state. W� is a linear function
of the positions xt and, since those have a Gaussian
probability distribution function, so does W�. When the
mean and variance of the probability distribution func-
tion PW

� are computed [using the stationary solution and
Green’s function of Eq. (2)], one finds [10]

lim
�!1

1

w�
ln

�
PW
� �pw��

PW
� ��pw��

�
� p: (4)

Here, p is a scaled value of W�, defined as p � W�=hW�i,
such that hpi � 1. We also wrote

hW�i � w�; (5)

with w the average work rate, which is independent of � in
the stationary state. In the current units, w � jv�j2.
Equation (4) is, for the work fluctuations, a more careful
formulation of the SSFT in Eq. (1). A work-related TFT
also holds [10,12,13].

We now turn to the heat SSFT. The heat Q� is that part
of the work W� that goes into the fluid. Some work is also
stored in the potential, so

Q� 
 W� ��U�; (6)

where �U� is the change in potential energy of the
particle in a time �,

�U� 
 U� �U0; (7)

with Ut 

1
2 jxt � x�

t j
2. This form of Ut makes Q� non-

linear in xt. As a result, the probability distribution func-
tion P��Q�� of Q� need not be Gaussian. Nonetheless, it is
possible to compute its Fourier transform.

The Fourier transform of P��Q��, defined as

P̂P ��q� 

Z 1

�1
dQ� e

iqQ�P��Q��; (8)

is computed by writing P� as [using Eqs. (6) and (7)]

P��Q�� �
ZZ

dx0 dx� P
W�;x0;x�
� �Q� ��U�;x0;x��; (9)

where PW�;x0;x�
� is the joint distribution of the work W�, the

positions x0 and x� at the beginning and at the end of the
time interval �, respectively. This distribution is Gaussian
because W�, x0, and x� are all linear in xt. When Eq. (9)
is inserted into Eq. (8), a seven-dimensional Gaussian
integral is left, which after some algebra yields

P̂P ��q� �
expfwq�i� q���� 2q2�1�e���2

1��1�e�2��q2g

�1� �1� e�2��q23=2
: (10)
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Once P̂P��q� has been transformed back, one considers

f��p� 

1

w�
ln

�
P��pw��
P���pw��

�
: (11)

Here, p is a scaled value of Q�, defined as p � Q�=hQ�i,
i.e., hpi � 1.We also used hQ�i � hW�i � h�U�i � w� by
Eq. (5), since h�U�i � 0 in the stationary state. The
scaled logarithmic ratio f��p� should be equal to p for
� ! 1 when the conventional SSFT holds.

As far as we know, there is no exact result for the
inverse Fourier transform of P̂P��q� in Eq. (10) in terms
of known functions. Therefore, a completely analytic
treatment did not seem feasible. Instead, we used first a
numerical method, the fast Fourier transform algorithm
[16], to invert Eq. (10). The resulting probability distribu-
tion function P� as well as the corresponding f� have
been plotted in Fig. 1. These results do not agree very well
with the straight line with slope 1, which should be
approached for large � if the conventional SSFT were to
hold. One might think that this is due to � not being large
enough. However, we found that deviations of f��p� from
p for large p are generic, while the straight line is
approached only for p values of smaller magnitudes
(jpj & 1). Nonetheless, we cannot say anything conclu-
sive about the large �, large p behavior because the
distribution gets very peaked and, hence, becomes
smaller for large deviations, which makes the numerical
method unreliable.

Therefore, we used next an analytical asymptotic ap-
proach based on large deviation theory [17] similar to the
treatment by Lebowitz and Spohn [5]. One considers then

e��� 
 lim
�!1

�
1

w�
lnhe��Q�i: (12)

This infinite-� quantity is used to reconstruct the distri-
bution function of Q� for large � by setting

P��Q�� � exp��w�êe�Q�=w��; (13)
110601-2



P H Y S I C A L R E V I E W L E T T E R S week ending
12 SEPTEMBER 2003VOLUME 91, NUMBER 11
where êe�p� is the Legendre transform of e���:

êe�p� � max
�

�e��� � �p: (14)

For a class of models, Lebowitz and Spohn proved the
symmetry relation

e��� � e�1� ��: (15)

From this, using Eqs. (11), (13), and (14), one sees that
lim�!1f��p� � p, i.e., the conventional SSFT holds [5].

Our numerical results suggest, however, that for our
model the conventional SSFT for the heat does not hold.
We therefore expect Eq. (15) to be violated. Indeed, the
following calculation of e��� shows this to be the case.

The Fourier transform P̂P��q� in Eq. (10) determines
e���. First, from Eq. (8), we have

he��Q�i 

Z 1

�1
dQe��Q�P��Q�� � P̂P��i��; (16)

Thus, we need the analytic continuation of P̂P� to imagi-
nary arguments. This poses no difficulty as long as P̂P�
remains analytic. One finds from Eqs. (10) and (16)

he��Q�i �
exp��w��1� ��f�� 2�2�1�e���2

1��1�e�2���2g

�1� �1� e�2���23=2
: (17)

Clearly, there are divergences at the singular points � �
��1� e�2���1=2, where the right-hand side (r.h.s.) of
Eq. (16) is no longer analytic, so that Eq. (17) only holds
for values of � in between those. Using Eqs. (12) and (17),
we have

e��� � ��1� �� for j�j< 1; (18)

where, taking � ! 1 as in Eq. (12), moves the singular-
ities to �1. This e��� satisfies Eq. (15) for 0< �< 1.

However, as � approaches the singularities, the func-
tion in Eq. (17) diverges. Beyond the singularities at
��1� e�2���1=2, the r.h.s. of Eq. (17) becomes purely
imaginary, and multivalued due to the denominator. But
the left-hand side of Eq. (17) remains real. Clearly, we
cannot use Eq. (17) for j�j > �1� e�2���1=2. To deter-
mine he��Qi in that case, we first need to know why the
integral in Eq. (16) diverges as � ! ��1� e�2���1=2. As
we will argue next, this happens because P� has expo-
nential tails. Since P��Q�� is a normalized distribution
and e��Q� a regular function, the divergence in Eq. (16)
can only be due to the behavior of the integrand at �1. In
fact, for � > 0 any divergence must be due to the behavior
at negative Q� and, for � < 0 it must be due to the
behavior at positive Q�. Now, for � < 0, if the distribution
function P��Q�� fell off faster than exponential for large
positive Q�, the factor e��Q� could not make the integral
diverge. As it does diverge, we conclude that the distri-
bution function falls off exponentially or slower. On the
other hand, if it did fall off slower than exponential, then
the exponential factor e��Q� would always dominate the
distribution function for large positive Q� and the inte-
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gral would diverge for all � < 0. Since there are negative
values of � for which the integral converges, the function
P� cannot fall off slower than exponential. Hence, it must
fall off exponential for large Q�. Considering � > 0, one
deduces along similar lines that it must also fall off
exponentially for large negative values of Q�.

In fact, the integral in Eq. (16) diverges for all j�j �
�1� e�2���1=2. If the function P��Q�� falls off exponen-
tially for large positive Q�, say as e�aQ� , the integral in
(16) diverges for all � � �a. Likewise, given that the
P��Q�� falls off similar to eaQ� for large negative Q�,
the integral diverges for all � � a. Hence, for j�j �
�1� e�2���1=2, the quantity on the r.h.s of Eq. (12), of
which the limit is taken, is minus infinity for all �, so that
e��� � �1. Thus, Eq. (18) becomes

e��� �
�
��1� �� for j�j< 1
�1 otherwise:

(19)

This e��� does not satisfy the symmetry relation in
Eq. (15), e.g., for � � �1=2, e��� � �3=4, whereas
e�1� �� � �1. The fact that Eq. (15) is not satisfied
means that the conventional SSFT does not hold. To make
this more precise, we use Eqs. (14) and (19) to find

êe�p� �

8<
:
�p for p <�1
�p� 1�2=4 for � 1 � p � 3
p� 2 for p > 3:

(20)

Note that via Eq. (13), the large jpj behavior is indeed
exponential [18]. Using Eqs. (11), (13), and (20), we find

lim
�!1

f��p� �

8<
:
p for 0 � p < 1
p� �p� 1�2=4 for 1 � p < 3
2 for p � 3:

(21)

For negative p, we have f���p� � �f��p�. Equation (21)
is an extension of the conventional SSFT. It coincides
with it for the middle region �1< p< 1 [19], but differs
from it for other p values. Most notably, for p � 3, it
attains a constant value of 2.

If we compare the exact prediction of Eq. (21) (plotted
as the bold solid line) with the numerical results (bold
dashed line) in Fig. 1, a clear discrepancy emerges: The
curve of f� keeps increasing with increasing p, whereas
Eq. (21) predicts that it should level off to a value of 2.
This turns out to be a finite � effect. To prove this, we need
a better treatment for large but not infinite �. This can be
obtained from a saddle-point method applied to e���,
which we will present in a future publication [20]. The
saddle-point method gives reliable results for sufficiently
large �, as can be verified by a comparison to our numeri-
cal results [20]. The asymptotic behavior for large � is
then given by

f��p� �

(
p� h�p�=��O���2� for p < 1

2�
																								
8�p� 3�=�

p
�O���1� for p > 3;

(22)
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where h�p� � ��8p�=�9� p2� � 3
2w lnf��3� p��1� p�=

��3� p��1� p�g. Being mainly interested in large and
small p, we left out the behavior in between p � 1 and
p � 3. Equation (22) shows that, as a function of p, f��p�
increases �

													
p� 3

p
for fixed �, while as a function of � it

decreases for fixed p. As expected, for � ! 1, it ap-
proaches the large deviation result Eq. (21) as ��1 for
small p and as ��1=2 for p > 3.

Whether the new features beyond p � 1 are observable
depends on the values of P��pw�� and P���pw��. If they
are too small, the corresponding f��p� will not be ob-
served in an experiment. The value of the distribution
function as plotted in Fig. 1 is non-negligible for values
for p (and �p) at which f� bends away from the conven-
tional SSFT. Furthermore, the values v� � 1:5 and � �
1:3 used in Fig. 1 are realistic, as in the experiment of
Wang et al. v� � 2:5 and � goes up to � 6. So this
behavior should be experimentally detectable.

In summary, we have shown that the behavior of heat
fluctuations in a dissipative system with a deterministic
component (the potential), and a stochastic component
(the heat bath, i.e., the water), differs from that known
from previous studies, in two respects. (i) For infinite �,
the behavior of the conventional SSFT is seen only for the
scaled heat fluctuation p between �1 and 1. For p > 1,
after a parabolic region between p � 1 and 3, the quantity
f� no longer increases, but stays at a plateau value of 2
(similarly, for p <�1, by antisymmetry of f�). (ii) The
finite � behavior of the conventional SSFT is in general
unknown, but in our case we find that f� keeps increasing
with p. However, f� stays well below the conventional
SSFT, implying a larger ratio of the probabilities of the
particle to absorb rather than supply heat. These features
are observable.

One of the striking features of the extension of the
SSFT, the plateau value of 2 for large (infinite) � and large
p, can be understood physically. For large � and large Q�
(i.e., p) the exponentially distributed �U� far outweighs
the Gaussian distributed W� in Eq. (6). The distribution of
�U� is exponential for large values (/ e��j�U�j), since it
is the difference of the potential energies of the particle at
two times [cf. Equation (7)], which are both Boltzmann-
like distributed (due to the presence of the water) and
independent of each other for large �. As hQ�i � w�, this
leads to P��Q�� / e��jQ��w�j, which yields P��Q��=
P���Q�� � e2�w� (if Q� > 0). Then Eq. (11) and � � 1
give f� � 2 of Eq. (21).

We only considered an extension of the SSFT here. An
extension of the TFT can also be obtained. While for
� ! 1, one gets again Eq. (21), for finite times, the
extensions of TFT and SSFT differ [20]. Furthermore,
the extension of the TFT differs fundamentally from the
conventional TFT, in that the latter holds as an identity
for all � [6], but the former holds only in the � ! 1 limit.
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One may wonder how general our extension of the
SSFT is. Our Langevin-based theory is applicable only
near equilibrium. The arguments above suggest that the
extension could also hold for other potentials. Perhaps it
even holds for a larger class of systems, not near equilib-
rium, with deterministic and stochastic components, as
these are the main physical ingredients in our theory.
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