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Abstract

In the last 10 years, a number of “conventional %uctuation theorems” have been derived
for systems with deterministic or stochastic dynamics, in a transient or in a non-equilibrium
stationary state. These theorems gave explicit expressions for the ratio of the probability to 5nd
the system with a certain value of entropy (or heat) production to that of 5nding the opposite
value. A similar theorem for the %uctuations of the work done on a system has recently been
demonstrated experimentally for a simple system in a transient state, consisting of a Brownian
particle in water, con5ned by a moving harmonic potential. In this paper, we show that because
of the interaction between the stochastic motion of the particle in water and its deterministic
motion in the potential, very di7erent new heat theorems are found than in the conventional
case. One of the consequences of these new heat %uctuation theorems is that the ratio of the
probability for the Brownian particle to absorb heat from rather than supply heat to the water
is much larger than in the conventional %uctuation theorems. This could be of relevance for
micro/nano-technology.
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1. Introduction

As is well known the 5rst and second law of thermodynamics only involve averages
of the physical quantities of macroscopic systems but say nothing about their %uctua-
tions. In particular, the second law for irreversible processes states that the average 1

heat >Q internally produced in an irreversible process has to be positive. In the last
10 years a number of %uctuation theorems have been derived for the %uctuations of
thermodynamic properties in non-equilibrium stationary [1,2], as well as transient states

∗ Corresponding author.
1 Here, as well as in the rest of the paper, a bar means an average.
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[3,4], which constitute re5nements of the laws of thermodynamics in so far that they
take into account a property of their %uctuations which goes far beyond the statement
that >Q¿ 0. In this respect a generalization of thermodynamics including %uctuations
has been in progress.

It should be pointed out that these new %uctuation properties are valid for large
%uctuations around a non-equilibrium stationary state possibly far from equilibrium.
As such they di7er from %uctuations dealt with in the context of irreversible thermo-
dynamics, such as the %uctuation dissipation theorem and the Onsager relations (as
treated e.g. in the classical book by De Groot and Mazur [5]), which refer to small
%uctuations around equilibrium.

The %uctuation theorems (FT) will be divided into two classes: conventional (CFT)
and new (NFT) %uctuation theorems, where in the latter case the word “theorem”
is premature. We will not con5ne ourselves here to heat %uctuations alone but also
consider work and energy %uctuations. In the literature until now the overwhelming
number of papers has dealt exclusively with heat in the form of entropy production as
it occurs in the second law.

1.1. Conventional FT

The 5rst discovery of a FT of the kind we will discuss here was mainly numerical
in a computer simulation by Evans et al. (in 1993) [1]. This FT for a non-equilibrium
stationary state was inspired by dynamical systems theory notions [2]. A similar FT
for a transient state was formulated by Evans and Searles (in 1994) [3]. In this paper,
we will restrict ourselves to the non-equilibrium Stationary State Fluctuation Theorem
rather than to the transient %uctuation theorem.

The CFT deals with the %uctuations of work as well as heat in a 5nite dynamical
system. The many particle (Hamiltonian) system is subject to an external force, which
does work on the system. However, this would heat up the system if it were not for
an ingenious internal thermostat, realized by adding a damping term to the equations
of motion. The dynamics of this system is purely deterministic. The dissipation taking
place in the system is manifested in a contraction of the accessible phase space of
the system which can be related to a (generalized) physical entropy production in the
system. 2 A FT was derived under a number of assumptions for such a system for the
heat or entropy production, which will be given below. Some years later, Kurchan (in
1998) [6] and Lebowitz and Spohn (in 1999) [7] derived a similar FT for a system
with purely stochastic dynamics under a number of assumptions.

In both cases a CFT was found, which can be written in the form

P(Q�)
P(−Q�) →

�→∞e�Q� : (1.1)

2 The dynamical systems are required to have an isoenergetic Gaussian thermostat for this to be strictly
true, otherwise correction terms appear, though these might possibly vanish in the large time or system size
limit.
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Here P(Q�) is the probability that the %uctuating heat produced in the system during a
time � has a value Q�. Therefore, −Q� is a value of the %uctuating heat absorbed by the
system of the same magnitude (during an equally long time). In taking the limit � → ∞
in Eq. (1.1), Q� ∼ � scales as �. The Q� (and later the work W�) in the stationary
state can be visualized as %uctuations on segments of duration �, obtained by cutting
a very long stationary state trajectory of the system in phase space into segments.

For systems with deterministic dynamics the same CFT holds for the work done in
a time � denoted by W�, i.e., Q� in Eq. (1.1) can be replaced by W�. The reason is that
Q� and W� are represented by the same mathematical expression here, due to the fact
that the thermostat converts all external work done on the system into internal heat.

There is a connection between this CFT and theorems discussed in the context of
irreversible thermodynamics. Gallavotti proved for deterministic dynamical systems,
that near equilibrium, Eq. (1.1) leads to the Onsager relations, the %uctuation dissi-
pation theorem and the Green–Kubo relations for the transport coeMcients [8]. This
seems to imply that the %uctuations incorporated in Eq. (1.1) go beyond irreversible
thermodynamics, i.e., beyond the linear, near equilibrium regime. There is no estimate
available for the range of validity of irreversible thermodynamics nor are there any
results in this nonlinear regime to date.

1.2. The system

We are interested in this paper in a quasi-many particle system: a Brownian particle
suspended in water and restricted in its motion by a laser-induced harmonic potential,
which is pulled through the water with a constant velocity v∗ (cf. Fig. 1). This system
was introduced earlier in a somewhat di7erent context by Wang et al. (in 2002) [9].

Contrary to the systems in Section 1.1, work and heat are not identical for this
system. The %uctuations of the work done on it as well as of the heat produced by it in
a time � were computed based on an overdamped Langevin equation [10,11]. Although
this system is in principle a many particle system, the many degrees of freedom of the
water have been contracted to those of the (Stokes) friction of the Brownian particle
and the strength of its assumed Gaussian white noise. In dimensionless units, 3 the
Langevin equation reads

0 = −ẋt − (xt − x∗
t ) + �t : (1.2)

Here, the 5rst term on the right-hand side represents the friction of the Brownian
particle in the water, the second term represents the harmonic force due to the harmonic
potential

Ut(xt) = 1
2 (xt − x∗

t )
2 (1.3)

while the third term represents the %uctuations of the Brownian particle due to the
thermal motion of the water molecules. xt and x∗

t are the positions of the Brownian
particle and the minimum of the potential at time t, respectively (cf. Fig. 1). Essential
is that contrary to the pure dynamics of the two previous systems, satisfying the CFT,

3 Compared to Ref. [10], this means the force constant k = friction constant, � = temperature, kBT = 1.
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Fig. 1. Brownian particle in a moving harmonic potential (cf. Ref. [9]).

here a mixed dynamics occurs: deterministic due to the harmonic force and stochastic
due to the water %uctuations. For this system, energy conservation reads as the 5rst
law of thermodynamics:

W� = Q� + PU� : (1.4)

Here, W� is the total work done on the system during time �, i.e., pulling it with a con-
stant velocity v∗ through the %uid over a time �; Q� is the heat developed in the water
due to the friction of the Brownian particle during time � and PU� =U�(x�) −U0(x0)
is the potential energy di7erence of the particle in the harmonic potential in time �.
Eq. (1.4) clearly shows the di7erence between work and heat in this system. Physi-
cally, the pulling of the harmonic potential drags the Brownian particle along, but with
a delay, because of its friction with the water, while at the same time this delay neces-
sitates a change in its potential energy from its initial position x0 to its 5nal position
x�. A non-equilibrium stationary state will be reached when the friction force cancels
the attractive force on the particle due to the harmonic potential (cf. Fig. 1) and the
%uctuations around this state will be studied.

In the non-equilibrium stationary state the averages of the thermodynamic quantities
W� and Q� are equal, since PU�=Ut+�−Ut =0 then. However, unlike in the cases of
pure (deterministic or stochastic) dynamics, P(Q�) �= P(W�), which is the main topic
of this paper.

In the following two sections, we 5rst sketch how the distribution functions for
W�;Q� and PU� for such a system are obtained, after which the %uctuation theorem,
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involving the ratios of the probabilities of W� and −W�, and of Q� and −Q� will be
stated.

2. Distribution functions

2.1. Work

The probability distribution function of the work W� done on the above-described
system during a time � can be derived directly from the Langevin equation [10]. To
do that, note 5rst that since the Langevin equation (1.2) is linear in xt , the distribution
function of xt is Gaussian. (It is an Ornstein–Uhlenbeck process.) Secondly, since
W� = −v∗ · ∫ �0 [xt − x∗

t ] dt depends also linearly on xt , its distribution is Gaussian too.
Therefore, it is completely determined by its 5rst and second moments and can be
written in the form

P(W�) ∼ e−(W�−W�)2=2�2
; (2.1)

where the variance �2 = (W� − >W�)2. Here the averages are over all time segments of
the trajectory of duration �. The 5rst and second moment can be computed from the
solution of the Langevin equation (1.2) [10].

2.2. Heat

A similar simple direct derivation of P(Q�) as was done for P(W�) cannot be per-
formed, since the Q� given by (cf. Eq. (1.4))

Q� =W� − PU� (2.2)

is quadratic in xt via the PU� (cf. Eq. (1.3)). A way to obtain nevertheless P(Q�) is
a much more complicated procedure via its Fourier transform P̂�(q):

P(Q�) =
1
2�

∫ ∞

−∞
dq P̂�(q)e−iqQ� : (2.3)

P̂�(q) can be computed exactly for all � (see Refs. [11,13]):

P̂�(q) =
∫ ∞

−∞
dQ� P(Q�)eiqQ� =

exp
[
q(i − q)v∗2{�− 2q2(1−e−�)2

1+(1−e−2�)q2 }
]

[1 + (1 − e−2�)q2]3=2
: (2.4)

Note that P̂�(q) is a function in the complex plane with branch cuts (due to the square
root in its denominator) and two singularities at q1 = i(1 − e−2�)−1=2 and q2 = −q1,
which are also the end points of the branch cuts from q1 to +i∞ and q2 to −i∞
(cf. Fig. 2). All singularities occur for imaginary q-values and introduce exponential
(rather than Gaussian) tails in P(Q�) for large Q�.

The approximate evaluation of P(Q�) can be performed for large � using the saddle
point method (SPM) [12], capitalizing on the fact that Q� in the exponent on the
right-hand side of Eq. (2.3) is proportional to �. As seen in Fig. 2, the integral

∫ ∞
−∞

along the real axis R in Eq. (2.3) can, for every Q�, be deformed to a path of steepest
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Fig. 2. Structure of the complex function P̂�(q)e−iqQ� in the complex plane, with p = Q�=Q� = −2, 0 and
4.25, respectively. The saddle points A, B, C and D are shown as dots. Wiggly curves along the imaginary
axis are branch cuts, ending in the branch points q1 (top cut) and q2 (bottom cut) indicated with a thin
horizontal line. The dashed line R is the real axis and SA, SB, SC and SD are paths of steepest descent
though the saddle points, at which the function attains a maximum.

Fig. 3. Mixed Gaussian and exponential behavior of P(Q�) (sketch).

descent SB in the complex plane that goes through the saddle point B, without passing
through a singularity—which is not possible for the saddle points A, C and D. All
that is needed to evaluate the integral along the real axis are then the properties of the
function at the point B. For details we refer to a forthcoming paper [13].

To summarize the results of the distribution functions for the %uctuations of all three
quantities occurring in Eq. (1.4):

1. P(W�) ∼ e−(W�− >W�)2=2�2
is Gaussian, from the Langevin Eq. (2.1),

2. P(PU�) ∼ e−�|PU�| is exponential. This can be physically understood by observing
that for large �;PU� is the di7erence of two independent quantities, distributed as the
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potential energy of a (Brownian) particle in a potential in contact with a heat bath,
i.e., with a Boltzmann weight e−�U .

3. Since Q� = W� − PU�, P(Q�) results from an interplay of the Gaussian P(W�)
and the exponential e−�PU (�). Thus the SPM leads to a mixed curve for P(Q�) which
is Gaussian-like in the center, but has exponential tails (Fig. 3).

3. Fluctuation theorems

3.1. Work

We start by introducing a new formulation of the FT for P(W�) which is more
precise than that given (for P(Q�)) in Eq. (1.1). Taking the logarithm of both sides
of Eq. (1.1), with W� instead of Q�, and dividing both sides then by >W�, we obtain a
reformulation of Eq. (1.1) of the form

lim
�→∞F�(pW ) = pW ; (3.1)

where F� is the %uctuation function

F�(pW ) =
1
>W�

ln
P(W�)
P(−W�) (3.2)

and pW =W�= >W� is a scaled work %uctuation. Eq. (3.1) expresses then the CFT for
W�, proven in Ref. [10]. A new FT for 7nite � for the work can be obtained from the
Langevin equation (1.2) and Eq. (2.1), of the form [10]

F�(pW ) =
pW

1 − �(�) ≈ pW + O
(

1
�

)
; (3.3)

where �(�) = (1 − e−�)=�. We note that all CFTs used so far in the literature restrict
themselves to � → ∞. In this model one can also discuss the 5nite � behavior and
its correction to the in5nite time behavior, which shows that the slope of F�(pW ) is
bigger than one for all 5nite � (cf. Fig. 4).

Fig. 4. CFT and NFTs for work and heat %uctuations.
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3.2. Heat

Proceeding similarly with Eq. (1.1) for P(Q�) as in 3.1 for P(W�) one 5nds the
CFT in a more satisfactory form

lim
�→∞F�(pQ) = pQ ; (3.4)

where pQ = Q�=Q� is a scaled heat %uctuation, and

F�(pQ) =
1
>Q�

ln
P(Q�)
P(−Q�) : (3.5)

Contrary to Eq. (3.1) for W�, the relation in Eq. (3.4) is in fact incorrect, due to the
interaction of P(Q�) with the (exponential) P(PU�).

A NFT can be derived using the SPM [12], both for in5nite and for 5nite �. The
behavior is determined by the above mentioned singularities in the complex plane in
carrying out the SPM. The result for F�(pQ) versus pQ is given in Fig. 4, together
with that of F�(pW ) versus pW for comparison.

While F�(pW ) versus pW is linear for all �, the behavior of F�(pQ) versus pQ is
much more complicated. In fact, for � → ∞ there are three regimes [11]:

F�(pQ) =




pQ for 0¡pQ¡ 1 ;

pQ − (1 − pQ)2

4
for 1¡pQ¡ 3 ;

2 for pQ¿ 3 :

(3.6)

Thus, for in5nite �, the NFT coincides with the CFT for small %uctuations 0¡pQ¡ 1,
then exhibits a parabolic behavior between 1¡pQ¡ 3 and 5nally reaches a plateau,
where F�(pQ)=2 for all pQ¿ 3. The behavior for pQ¡ 0 follows from the asymmetry
of F�(pQ) (cf. Eq. (3.5)).

The SPM also allows to study analytically the approach of the 5nite � behavior to
the in5nite � behavior, giving for large but 5nite �:

F�(pQ) =




pQ +
h(pQ)
�

+ O
(

1
�2

)
for |pQ|¡ 1 ;

2 +
g(pQ)√
�

+ O
(

1
�

)
for pQ¿ 3 ;

(3.7)

where

h(p) =
8p

9 − p2 − 3
2v∗2 ln

[
(3 − p)(1 + p)
(3 + p)(1 − p)

]
: (3.8)

g(p) =
√

8(p− 3) : (3.9)

Eqs. (3.7)–(3.9) show that the asymptotic behavior of F�(pQ) for pQ¿ 3, is a slowly
increasing function ∼ √

pQ − 3, while the asymptotic � → ∞ curve is approached as
�−1=2 for pQ¿ 3 and as �−1 for pQ¡ 1.
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4. Discussion

In Table 1, the results for the CFT and the NFT for work and heat are summarized.
A number of questions and remarks present themselves:

1. How general is the NFT for systems with mixed deterministic and stochastic
dynamics? Is the Boltzmann factor and the ensuing exponential decay for large %uc-
tuations more general than in this model? One would be inclined to think so, in view
of the physical argument of point 2 in 2.2.

2. The relative probability for the Brownian particle to gain rather than supply heat
to the water is much larger in the NFT than in the CFT (cf. Fig. 4). This might
be of relevance in designing micro or nano-machines sensitive in their functioning to
the heat absorbed during large %uctuations. The CFT would not be a good basis to
judge this e7ect. We remark that since F�(pQ)¿ 0 for pQ¿ 0 in the NFT, >Q�¿ 0,
in accordance with the second law.

3. The plateau value of 2 for F(pQ) for large pQ (¿ 3) can be understood physically.
For the probability for large Q� (i.e., pQ), the exponential distribution P(PU�) ∼
e−�|PU�| dominates over the Gaussian distribution P(W�) (cf. Fig. 3). This implies,
with >W�= >Q� (see the end of Section 1.2), that P(Q�) ∼ e−�|Q�− >Q�| so that F�(pQ)=2,
with � = 1.

4. Similar results as discussed in this paper are obtained for the Transient Fluctuation
Theorem [3,4]. It is certainly, at least in this model, not the identity for all � which
obtains in the CFT [10,13].

Table 1
Results for the work (Section 3.1) and heat (Section 3.2) %uctuations

Work Heat

Symbol X� W� Q�
Distribution Gaussian Gauss.+Exp. tails

Fluctuation function F� =
1
>X �

ln
P(X�)
P(−X�)

idem

� → ∞ Conventional New
F� straight line with slope 1 F� has slope 1 for small Q�
for all W� F� = 2 for large Q�

� 5nite New New
F� straight line with slope ¿ 1 F� no slope 1 for small Q�
for all W� F� increasing for large Q�

Plots
F�(p)
versus
p
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5. All our analytic results have been veri5ed by comparison with the results of
two numerical methods: a sampling method and a fast inverse Fourier transform of
Eq. (2.3) [13]. In particular, the SPM turns out to give good results already for �¿ 3,
whereas curves for �6 3 need to be obtained numerically.

6. The connection between the NFT and theorems of irreversible thermodynamics
is unclear, although the linear (CFT-like) behavior of the NFT for small %uctuations
with 0¡pQ¡ 1 (cf. Fig. 4) suggests that the same relations hold as for the CFT for
small deviations near equilibrium.

7. So far, in all cases dealt with here, only one property of the %uctuations of the
thermodynamic quantities work and heat in a non-equilibrium stationary state—has
been discussed, viz. the %uctuation function F�. Whether something can be said about
other properties of %uctuations of thermodynamic quantities, also beyond the linear
regime, remains an interesting open question.
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