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Heat fluctuations over a timein a nonequilibrium stationary state and in a transient state are studied for a
simple system with deterministic and stochastic components: a Brownian particle dragged through a fluid by a
harmonic potential which is moved with constant velocity. Using a Langevin equation, we find the exact
Fourier transform of the distribution of these fluctuations for allBy a saddle-point method we obtain
analytical results for the inverse Fourier transform, which, for not too smaljjree very well with numerical
results from a sampling method as well as from the fast Fourier transform algorithm. Due to the interaction of
the deterministic part of the motion of the particle in the mechanical potential with the stochastic part of the
motion caused by the fluid, the conventional heat fluctuation theorem igffioite and forfinite 7, replaced
by an extended fluctuation theorem that differs noticeably and measurably from it. In particular, for large
fluctuations, the ratio of the probability for absorption of h@gst the particle from the fluigto the probability
to supply heatby the particle to the fluidis much larger here than in the conventional fluctuation theorem.
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[. INTRODUCTION tional SSFT only holds for sufficiently largstrictly infinite)
i i times, the conventional TFT holds as an identity for all times
Knowledge of the behavior of heat fluctuations has ang). Thus, for the SSFT, the: sign in Eq.(1) indicates the

intrinsic value, especially for small systems such as Nanosysarge r behavior, whereas for the TFT, it can be replaced by
tems and biomolecules, where the fluctuations are relativelyp, equality sigr{9].
large, but the widespread interest in fluctuation theorems Apart from an(early) laboratory experiment on the SSFT
(FTs) stems mostly from the fact that although there are few[10], the FTs were restricted to theoretical and simulation
general results in nonequilibrium statistical mechanics, thesapproaches: it was difficult to make laboratory experiments
theorems seem to provide some. The conventional FTs statsn macroscopic systems, since the large number of particles
that the probability distribution functiodfPDF 7 for the  reduces all fluctuations enormously. Recently, Watcal.
average over a time of a physical quantityA to have a [11] measured a TFT in the laboratory, by studying the mo-

valuea, satisfieq1-6] tion of asingle Brownian particle dragged through water by
a laser-induced movingconfining potential. But while in
m((A),=a;7) Ref. [17] the_entropy productio(pr h.ea) fluctu_ations over a
m ~ exgar], 1) time 7 were intended to be studied in a transient state, in fact

the fluctuations in the work done on the system during that
. time were studied. These differ from the heat fluctuations
where (A). denotes the time average #fand the depen- 0 (5 the joint presence of the confining potential and the
dence of the PDF omr has been explicitly indicated. The \yater, as we will explain more clearly later in the paper.
asymmetry in Eq(l) is caused by some external field that is \while for this system the conventional SSFT and TFT do
present in these models, such that a positive valy&gfcan  hold for the totalwork done on the systerfil2], for heat
correspond to a behavior “with the field” and a negativefluctuations, very different FTs hold, in which the behavior
value to a behavior “against the field.” Note that for large of large heat deviations is notably and measurably different
positive values fom become much more probable than nega-from the conventional FTs, as shown in a recent pgpay.
tive ones. To be more concrete, in dynamical systems theoryere we present the full theory underlying the conclusions of
the quantityA pertains to fluctuations in the “phase spaceRef. [13].
contraction rate’3], while in stochastic system#, involves The paper is organized as follows. Section Il contains the
an “action functional[6]. In specific cases, both have been basic theory. We present the mod&ec. Il A), explain the
connected with the heat or entropy production. Such a condifference between work and heat in the mo¢géc. 1l B),
nection is based on the expression of the phase space cosmd treat the work-related SSFT and TFT fu{lyec. Il O.
traction rate and the action functional, respectively, whichFor the heat fluctuations there is no expression for the PDF
typically have the form of a thermodynamic force times ain terms of known functions, but its Fourier transform can be
current, divided by the temperature of the sys{&ini.e., the  calculated exactlySec. Il D). Since this has no known exact
same form as the entropy production in irreversible thermoinverse, we first calculate, in Sec. I, the PDF of the fluc-
dynamics. It is, however, not necessary to make the connecuations using two numerical methods: a sampling method as
tion with the entropy production and in this paper, we will well as the algorithm of the fast Fourier transform to perform
simply use the heat. the inversion of the Fourier transform. The results of both
There are in fact two different kinds of FTs: a transientmethods agree well with each other and point to violations of
(TFT) and a stationary state HBSFT). While the conven- the conventional SSFT and TFT. Next, this is substantiated
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by an analytic method developed in Sec. IV based on thé=0 and that during that time the potential did not move, so
saddle-point method, which is shown by a comparison withithat the initial PDF at timé=0 is the equilibrium one. We
the numerical methods, to work well wheris not too small.  found for the PDF of the positior of the Brownian particle

In Sec. V we show how this method can be used to obtaimat timet,

expressions for the extended heat FTs, both in the limit of . o

T—, as well as for finite times. We conclude with a discus- p(x;t) = (2m) 3 —v (t-1+enf2, (8
sion of the results in Sec. VI. At the end, two appendice

give some technical details used in the text. SThe resulting average positiqy) is therefore

(xp=V'(t-1+e"). 9

II. BASIC THEORY . . . -
Equationg8) and(9) show that the system is not in equilib-

A. Model rium, but that, after a transient time period of ordefatter
; Tt
Theoretical descriptions of the experiment of Warigal. ~ Which one may neglect the teren’) the system becomes
[11] have been given even before the experiment by MaStationary in a comoving frame—the PDF shifts to the_rlght
zonka and JarzynskLL4], as well as recently by the authors with a constanE velocity . Thg mean position of the pgrtlcle
[12,13. All were based on an overdamped Langevin equa_then becomes’ (t—1), which is not equal to the position of

_ X shows we are in a stationary state where the average har-
X == 7 X - %) + @Y (2)  monic force {(x))—Vv't)=v" balances the friction force\-.

Below, we will need the correlations of the position at
different times. For the time-autocorrelation function>of
Ref. [12] gives in current units

Herex, is the (three-dimensionalposition of the Brownian
particle at timet, a=677R is the (Stoke$ friction of the
particle in water,n is the shear viscosity of water, amlis
the radius of the particle. Furthermore, the relaxation time of — oot

o R ' X Xt,) = (X )X, ) =€ 2], 10
the position of the particle in Eq1), 7, equalsa/k, wherek X = (X)) (10
is the strength of the harmonic force. This force is derived

from the potential B. Work versus heat fluctuations

2 3) We first consider the fluctuations in the total work done

on the system. This work is the total amount of energy put
into the system. By the system, we mean here the particle in
the potentialU plus the water. At any time, the harmonic
potential exerts a forcE,=—(x,—V't) on the particle. Conse-

x: =Vt (4) quently, the particle exerts a reaction forde; en the poten-

. ] ] tial. The potential has to be kept moving at a fixed velocity
(for t>0) with v’ the(constant velocity of the motion of the  \* for which an external force on it of magnituds is re-
potential through the water. Finally, the random foes  quired to balance the reaction force. Hence, the fluctuating
taken to be Gaussian artifunction correlated in time{Z,) work W, done on the system over a time interval frorto
=0 and({{9=2kgTad(s—t)1. Here, the brackets denote an t+ 7 is given by
average over realizations, is the temperaturesg is Boltz- . -
mann’s constant, antldenotes the 3 3 identity matrix. szf iV -Fy = eV - [= (xg =V'1)]. (10)
t

k *
U(x,t) = E|X - X4

wherex; is the position of the minimum of the harmonic
potential at timet, given in our case by

In the rest of this paper, we will use a reduced set of units.
For our time unit we will use: thus wherevet appears one ) ) ) o
should read/Tr; for our energy unit’ we Choog%'r and for We next consider the he@:, and its fluctuations, which in
our length unit, we use the width of the equilibrium PDF of contrast to the total workV,, is only that part of the work
x, in the potential, i.e.,kgT/k. This change of units has been Which goes into the fluid, while the other part of the total
carried through consistently in the paper by simply settingVork goes into the potential energy of the particle in the
a=1,k=1, andkgT=1. Then the Langevin equation above in harmonic potential. Therefore,

Eq. (2) takes the simple form Q.=W.- AU, (12)

t

).(t == (Xt - V*t) + gtv (5) Whel’e

where(; satisfies
AU, =UXpent+ 7) = U (X 1). (13

<§t> = 01 (6) . . .
The potential energly) was given in Eq(3) [15]. Note that
— _ in Egs.(11)—«13) we suppressed thtedependence.
(@ =20t =91, @ Before we discuss the fluctuations in the work and the
In Ref.[12], the distribution ofx, and its time autocorre- heat, we want to say a few words on their average behavior.
lation function were determined, under the assumption thatJsing Egs.(8) and(11), we find that the average work in a
the particle has been in the potential from titme-~ up to  time interval fromt to t+ 7 is given by
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W) =wl7-(1-ee], (14) P(s) _

msv
P e?msv. (20)

where
If the variance is twice the meanF2m, the right-hand side
2. (15 (rhs) of this equation becomess, which is of a similar form
) ] as the FT in Eq(1). To apply this equation to the work
From Eq.(14), one sees that after a transient timef O(1),  fiyctuations in a convenient way, we defipas the average

the second term within the square brackets can be neglectegte of work in timer, W,/ 7, scaled by the average rateof
Then, i.e., in the stationary state, the average worlvis  work in the stationary state:

which means that the rate of wovk done on the system is
constant. To calculate the average heat, we us&By.and W,
consider first the average potential energy P W1

*

Vv

W=

(21)

The transient PDPPY(W,; 7) of W, and the transient PDF

— 1 ]2 — 3 1 —1\ 2
(Ui, 1) = f dXP(X’t)§|X “ViP= o oWl -er) 7(p; 7) of p are related by a constant Jacobian:

2
(16) ;1) = wrPH(W,; 7). (22

[by Egs.(8) and(15)], from which we find, by Eq(13), that  SuperscripW denotes that these are PDFs related to work.
<AUT>=W[(1—e'T)e‘t—%(1—e‘27)e‘2t]. Combining this with  Using Eq.(20) and the fact that fos=W, the variance is

Eqgs.(12) and(14), one obtains twice the mean, one finds the conventional TFT:
— 1 _ _ W ..
Qn= W[T+ 5(1 -€e 27)6 2t:I- (17) % =exdW,] = exdwp]. (23
T )

From this equation, we see that for the heat too, after a tran- ] ) ]
sient time ofO(1), the rate of heat production becomes aNote that the Jacobian drops out on the left-hand side of this

constant. Furthermore, this constant is the same as that f§auation. Equation23) coincides with Eq.(1), with (A);
the work in Eq.(14). So in the stationary staten average =WP and shows that the TFT holds for work fluctuations. In
all work is converted into heat. One might therefore befact, it holds exactly“as an identity"[8]) for all times 7.
tempted to identify heat and work, at least in the stationary For the work-related SSFT, one should in principle look at

state. However, it will become clear that such identification2 single(half-infinite) trajectory in the stationary state, and
is not possiblefor the fluctuationsin work and heat. consider the statistics of work done in time intervals of

length 7 along that trajectory. However, because of its sto-
chastic nature, our system behaves ergodically and the dis-
tribution of the initial points of these intervals is simply the
Here we will briefly summarize the results for the work stationary one. Thus, the desired statistics can be determined
fluctuations from Ref[12] needed in this paper. The work in by considering a single intervalof which the initial point is
Eqg.(12) is defined as an integral over the path of the particlesampled from the stationary state. In addition, as shown in
SinceW, is linear in the pattx;, andx, is Gaussian distrib- the previous sections, the system reaches a stationary state as
uted, it follows thatW, is Gaussian distributed as well. t—<, in an exponential fashion. Hence we can generate the
Hence, only the first two moments of the PDF need to besampling of the initial point of the interval by considering

C. Distribution of work fluctuations

considered. the interval[t,t+ 7] for t—co. In that limit, Eq.(14) gives
For the work-related TFT, let us first consider the PDF for
work done on the system duringtensient stateof time 7, (Wos=wr. (24)

i.e., for an ensemble of transient trajectories of duratipn
starting in equilibrium at=0 [2,8]. The first moment can
then be found from Eq.14), with t=0,

The subscript S denotes that the average is to be taken over
trajectories in the stationary state, in the oo limit just ex-
plained. The variance can be computed similarly, and the
result is[12]

(W= (W) Ps=2w(7- 1 +€7). (25)

Wpr=w(r-1+e7), (18)

where subscript T denotes that the average is over transient

trajectories. The second moment can be calculated as in Reflote that now the variance in E¢R5) is not equal to twice

[12], using the relations in Eq$8)—(11), to be the mean in Eq(24), except whenr—oo. We therefore ex-
pect that only forr— oo, we have

(W, = (W7 =2w(r-1+€7). (19 Wi
KUS p, T s _
This is exactly twice the average in §d8), which turns out A-pir) ex W] = exwp], (26)

to be crucial. Given the meam and the variance of a
general Gaussian distributed varialslets PDF is given by wherew‘é" is the PDF of the time-averaged scaled worln
P(s)=exfd—(s—m)?/2v]/y2mv, hence the stationary state. Since the rhs goes to infinity in the
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—oo limit, Eq. (26) is not a well-defined result. A more pre- Using Eqs.(3), (12), and(13), the transient PDIP? of Q,is

cise form of the SSFT is related toP*T(WT,Axl,sz; 7) by
lim f¥(p; 1) = p, 27 )
H“ SPn=P 20 P?(QT;T)=JJfdW,dAxldszPT(WT,Axl,sz;7-)
where one defines th&ork fluctuation functioras L
— - 2 _ 2
%(p: 7) 1 In{ me(p;7) } 28 X 5<QT W, + 2[|AX2| |AX| ]) (32
yT = ., |-
SPT T wr e pin)

The same can be done for the stationary case. The PDF
Indeed, using Eqg20), (24), and(25), Eq.(27) follows, i.e., P*S(WT,Axl,sz; 7) is defined as the infinite time limit of the
the conventional SSFT for the work fluctuations ho[@i].  joint PDF of W,, and the relative positiondx; and Ax,

defined by
D. Distribution of heat fluctuations .
The difficulty in considering the hea®. instead of the A =x-v, 33
work W, lies herein, that it is not linear in the position of the AXy = Xeo = V' (L + 7). (34)

Brownian particle, through the contribution Ofin Eqgs.(12)
and(13), which according to Eq(3) is quadratic inx;. As a
result, the PDF ofQ,, denoted byP? in the transient state
and PS in the stationary statéewith superscriptQ for heay,
will not be Gaussian and it does not suffice to calculate their «

QO ) = .
first two moments. Nonetheless, the Fourier transforms of Ps(Qr7) = f f f dW,dAx;dAXzP(Wy, AXy, AXa: 7)

these PDFs,

Like P}, Pg is Gaussian. FronP, the stationary state PDF
of Q, can be found from

* - 1 2_ 2 )
Pj(a; ) = f dQ.€%P(Q,;7), (29 X5<QT Wt Sl Axa ). 39

The mean and variance & in Egs.(32) and(35) are cal-
canbe explicitly calculated, as will be shown below. Hefe, . |ated in Appendix A ! 4s.(32) (35
stands either for T or for S, and this notation will be used Equations(32) and ('35) cannot be integrated explicitly.

throughout the paper. due to the quadratic nature afU_, but their Fourier trans-

Consider first the transient case. We start by considering, ..« .an be obtained. as is seen when one combines Eq.
the joint PDFP(W,,AX,AX;; 7) of W, Ax; andAx,. Here, (32) or (35) with Eq. (29) to yield

Ax,; and Ax, are the positions of the particle relative to the

position of the minimum of the potenti&él at times 0 andr, A « )
I’espectively, i.e., Pj(q’ T) - dWTdAxldAX2Pj (WT,AX]_,AX2, T)
AXy = Xo, (30) QW ~(Ax,P-|Axy P)/2] (36)
A =X, =V BD  BecauseP’ and dMW(3x>8xP72 are both Gaussian, the

BecauseWN,, Ax,, andAx, are all linear in the patl,, Pfr is integrals in Eq(36) can be explicitly performed. The details
Gaussian, so that only its mean and variance are neededf the calculation are given in Appendix B, with the result

1-e A+ (A/2+29°) (1 -€
e g0

Pj(q;7) = [1+(1-e2)q 2 ’ (37
[
where forj=T, Ar=1, while for j=S, Ag=0. The PDFSDJQ to hold exactly, i.e.[cf. Eq. (1) with (A),=Q,/ 7]
are related to th@;(q; 7) by the inverse Fourier transform
1t P2(Q.7)
PUQ, 7 = — f dq €'9%P;(q; 7). 38 T =, 39
FQnn=5_] dqe™=Pia;n (38) PO~ Qi) e (39)

Before we proceed with the evaluation QF(QT; 7) from
Egs.(37) and(38), we note that if the conventional FT were then, by the definitior{29), we would have
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Pj(a; 7 = Py(i ~a; 7). (40)
If EQ. (40) does not hold, the fluctuation theorem in E8Q)

cannot hold exactly for alt. NeitherP+(q; 7) nor P<(q; 7) in
Eq. (37) satisfy Eq.(40). That means we can rule out the
possibility of a TFT or a SSFT for heat fluctuations that
holds as an identity for ah-

The first term in the exponent in E(37) does have the
symmetry in Eq.(40), and this term is the only one that
grows with the timer. However, one cannot conclude from
this that the FTs hold for large, due to the singularities in
Eq. (37). In the rest of the paper, we will be concerned with
whether Eq.(39) holds, both for transient and stationary
states, forr— o, or, if it does not, what the deviations from

this behavior are. To be precise, similar to the treatment in’
Sec. Il C, we define the scaled heat fluctuations—denoted bﬁz

the same symbaqgb as scaled work fluctuations—as
(41)

[cf. EQ.(21) and the remark below E@l17)]. Its PDF is

72(p; 7) = WrPR(Wrp; 7) (42)
27 [ gqeimnp (g;) (43)
2mJ

[cf. EQ. (22)], where EQ.(38) was used. Furthermore, we
define theheat fluctuation functioficf. Eq. (26)]

Qn-
Q- ™ (P 7)
fi(p;7) = we In[—‘—Q( o T)} (44)
and we investigate wheth¢cf. Eq. (28)]
lim f2(p;7) =p (45)

T—®

as is required for the conventional FT.

Ill. NUMERICAL APPROACH

Since no exact Fourier inverse of E&7) is known, we

PHYSICAL REVIEW E 69, 056121(2004)

P

FIG. 1. The PDFs:-rQ obtained by two numerical methods, for
=2.0 andr=1.0. Sampllng method resuli®Ng=2 000 000, 5p
0.2) are shown as crosses fﬁf? and as dots fowS, respectively.
st Fourier transform resulfgq=4X 1074, gmnax=200) are shown
as a thin dashed line far? and as a bold dashed line faf. The
inset shows the corresponding fluctuation functicﬁﬁs[Eq. (49)]
and a solid straight line indicating the prediction of the conventional
FT.

transformalgorithm[16] applied to the inverse Fourier trans-
form. This algorithm takes a discrete set of values of the

function P;(g) for g in an interval[—0mayx Omax With equal
spacingdq between theg-values in the interval, and returns
values of the(inversg transform, i.e., of the functioR®, on
a reciprocal grid of values fa®.. If dq is small enough, and
Omax IS large enough, this can be used to obtain a good ap-
proximation for the(inversg Fourier transform. An error es-
timate can be found by varyingy andq,.,and observing to
what extent the results have converged. In all plots in this
paper, these errors would be unobservable and are therefore
not plotted. Note that oncIeJQ is known, by Eq(42) we can
obtain 72 as well.

The results of these two methods for the PB#sand 73
for the parameter valuag=2.0 andr=1.0 have been plotted
in Fig. 1 as a function op, and the corresponding fluctuation
functionsf$ andfg are plotted in the inset in that figure. The
two numerical methods agree very well, but do not agree at
all with the straight line with slope 1 of the conventional FT
[i.e., p cf. Eq.(45)], which is also drawn in the inset in Fig.

first treat the problem of finding the PDF of heat fluctuations1, neither in the stationary nor in the transient case.

numerically.

To investigate the discrepancies with the conventional FTs

We used two numerical methods. The first is a samplingurther, we have explored a range of values for the param-

method which starts from the expressions in E@2) and
(35) that give thePQ in terms of theP] From the Gaussian

etersw and 7, using the two numerical methods. Some re-
sults are shown in Fig. 2. One sees that for large valueg,for

PDF P with the mean and variance calculated in Appendixdeviations Ofo(p 7) from the straight ling of the conven-

A, one draws many sets of valué¥/_,Ax;,AX,), using a
random number generatdt6]. From each set, using Egs.
(12), (13), and (41), p=(W,-AU,)/wr is calculated. From

tional FT are generic.
Furthermore, Fig. 3 show$or w=2.0, but the same holds
for otherw valueg that for larger, the straight line is ap-

thesep values we build a histogram by constructing bins of proached for smalp, both in the transient and the stationary
width &p in an intervall —pmax Pmaxd @nd counting how many case, although the approach is considerably slower for the
of the values fall into each bin. If the number of sampleformer.

pointsN is large andsp is small, the histogram gives a good

approximation for the PDRr°. As a simple error estimate,

IV. ANALYTIC APPROACH—SADDLE POINT METHOD

one performs this procedure a few times with varying ran-

dom seeds, and determines the spread in the results.
The second numerical method is the standastl Fourier

The numerical methods are not suitable to give reliable
results for the tails of the PDFs for large To get around
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! T i : ? P
5 @ _."'j 5 L) ‘«"’0"'— e(q;n) =~ im[faj(q; D] (47)
A B R N e "
o s is of order7® [see Eq(37)]. The presence of a large param-
0 . . ; 0 . ; . eter 7 in Eq. (46) makes it suitable for the saddle-point
o 1 2 3 o 1 2 3 method[17], which we will briefly describe now.
p 4 To get a good approximation of the integral in E46),
. . — . . — one considers
2 1@ [ 2 1@ (o] _
w | e | = | il _ h(a) = -wle(q;7) +igp] (48)
X s as a function of a complex-valueg(where the dependences
o0 & s s o KT s of honj, p, andr are suppressedThen, one determines its
0 1 2 3 0 1 2 3 saddle point i.e., the complex numbeg=q" for which
p P dh/99=0. Through this point" in the complex plane lies a

path of steepest descentaf®ng which Imh is constant and
Reh attains a maximum ag’ [17]. Next, one continuously
deforms the original path of integratidt(here the real ax)s
method result§Ns=1.2X 10°, 5p=0.2) are shown as thin crosses tp this path of steepest d,eSCéhWithOUt cros_sing singulari-
for f? and as bold dots fofg. Fast fourier transform resulsiq ties. The integral ovesS is for large 7 domlnated by the
=4% 10, Gnax=200) are shown as the dashed thin curves ffgr ~ (Smal) segment or around the saddle poinf and can be

and as dashed bold curves fi§. The solid straight line indicates €Xpanded in inverse powers afby Taylor expanding the
the prediction of the conventional FT. functionh on Saround the saddle point. For the leading term

one uses a second-order Taylor expansion and fibds

this, we developed an asymptotic analytic approach. oc o .

The starting point of the approach is to notice that the J dg "9 = | ———eM@"[1+O(r}]. (49
exponent in Eq(37) grows linearly with7. Thus, 77 , given - (@)

by Eq.(43), can be written as

FIG. 2. Numerical results for the fluctuation functioisfor the
stationary(j=S) and the transient cagg=T), for (a) w=1,7=4, (b)
w=2,7=2.5, (¢) w=3,7=1.3333, and(d) w=4,7=1. Sampling

Here,« is the angle between the direction of the p&tivhen
it traverses the saddle point, and the real axis. Furthermore,
wr [ _ h"(q") is the second derivative df with respect tog at the
72(p;7) = z_f dge e niap] (46)  saddle point’, which is assumed to be nonzero. The correc-
- tion term in Eq.(49) is O(7), though that strictly applies
only when the functiorh does not depend on In our case
where it does, and we will see that consequently the correction
terms can then b®(7?), although the leading behavior in

15 : : Eq. (49) is not affected.

(a) The form ofh(q) in Eqg. (48) has the following simplify-
ing consequences for the expression in Ef). First, the
equation for the saddle poimh/ﬂq|q:q*:0, becomes

‘ ] €(d'in = ~ip, (50)
% /,ﬂ/ wheree is the derivative ofe; with respect tog. Second,
A h'(q") |n Eq. (49) is equal to wej(’(q ). This second deriva-
05 | o .,»” tive can be further simplified by noticing that E&O) holds
p/ e for all p, so we can take the derivative with respecipton
o o9 both sides to finc'(q"; 7)(aq"/ dp)=—i. Hence
/i/ 8/5/6( * 1
/x:*/ il " "¢ ~* aq B
e T Ih"(q")] =wle/(q"; 7| =w| — (51)
P

Third, the approximation is for a PDF, which should be real
FIG. 3. Numerical results for thedependence of the fluctuation and positive. Thus, if the saddle-point method is to be a

functlonsz for w=2.0 for (a) the transien(j=T) and (b) the sta-  ¢onsjstent calculation of a PDF, we must have
tionary case(J—S) Sampling resultgNg=1.2x 10°, 5p=0.2) are

shown as symbols(*) 7=0.5, (¢) 7=1, () 7=2, () 7=4. Fast a=0. (52
Fourier transform result$6g=4x 104,qna=200 are shown as

the dashed curvegthe 7 values of these curves are the same asWe will prove later that this is indeed the case. Using Egs.
those of the coinciding sampling pointdhe solid straight line is  (48), (51), and(52), we apply the saddle point approximation
the conventional FT result. Eq. (49) to the integral in Eq(46) to find
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p =-2 p =0 p=425

Sa (A il

FIG. 4. Geometry in the complex plane of
the saddle points, singularities, and paths of
steepest descent bfq) [Eqgs.(48) and (54)] for
the stationary statgA;=0], for w=1, =4, and
p=-2, 0, and 4.25, respectively. In all graphs,
solid dots depict the position of the saddle points
A, B, C, and D. Wiggly curves give the branch
cuts ending in the branch points @t i which
are indicated with a thin horizontal line. The
branch point at +is also a pole. The dashed line
R gives the original line of integration, i.e., the
real axis. Solid lines labele8,, Sz, Sc, and S
_3 _3 _3| /S are paths of steepest descent though the saddle
point, on which Reh attains a maximum.

-1 0 1 -1 0 1 -1 0 1

wrlad N lines of constant Imh, where the values of the constant for
Qp- 1)~ + | VT 29 | wie(qin+ipd]
- (P; 7) or | ap €0 : (53)  Imh are chosen to match the values of mat the four
P saddle points.

Knowing now the geometry df in the complex plane, we
can determine which saddle point to use. One sees that for all
p the pathS; through saddle point B is a possible deforma-
tion of the real axis: each point on the real axis is simply
; A e shifted up or down until it lies on this path and no poles or
asymptotic expansion in inverse powersofNow if 7is  qner singularities are crossed in doing so. Strictly speaking,
large enough so that terms of relative ordet can be ne-  hq geformation changes the end points because they get
glected, then terms which are exponent_lally sma]h-_lpan shifted by an imaginary amouid [wherea can be shown to
also be neglecteflL8]. Therefore, we use in the definition of pe (1-p)/2], but one can add portioria to the integration
the exponent in Eq. (47) the expression of the Fourier path from <o to —o+ia and frome+ia to =, and as the

transformP;(q; 7) in Eq. (37) without exponential terms, so integrand vanishes on these portions, the integral taken over

Here, the symbok is for convenience used to denote the
asymptotic behavior, instead of explicitly denoting the cor-
rection terms a©(7 1) as we did in Eq(49).

As mentioned above Eq49), this method gives an

that [19] R and overS; have the same value. This is not true 8,
S, andSp.
D =i 49°+3Ai9 3 In(1+¢?) The graphs in Fig. 4 suggest that the p&ttgoes through
&G0 =-dli-a)- 2rivq | 2wr (54 B horizontally, ie., thate=0 as Eq.(52) conjectured. To

prove this, notice that for purely imaginary values fpi.e.,
When substituted in Eq50), we obtain a fourth-order poly- g=i\, h(i\)=—-w[e(i\;7)—\p] is real if —-1<A<1 [cf. Eq.
nomial equation for the saddle points, so that there are fous4)]. Hence, the imaginary axis fromi 4o i is a line of
saddle points. To know which of the four saddle points toconstant imaginary part df. In the saddle point, lines of
use, one needs to determine their location, the paths of steepenstant imaginary part cross perpendiculddly]. Thus, in
est descent that traverse them, and to see if our initial intesaddle point B, the curve of steepest descent is seen to be
gration line(the real axig can be deformed to lie on one of perpendicular to the imaginary axis, i.e., in the direction of
these paths without crossing any singularities. the real axis, so that indeed=0.

For three typical values fop we have depicted the four  \We remark that the above analysis for the stationary case
saddle points oh for the stationary state in Fig. 4, calculated can be carried through also for the transient case, with only a
analytically by MATHEMATICA [20] which uses Ferrari's slight change in the saddle points.
method for solving the quartic equati¢®l]. We see in Fig. Our saddle-point method now consists of the following.
4 that for allp there is one saddle poif#) on the imaginary \We useMATHEMATICA to determine analytically the purely
axis above, one in betweeni-andi (B), and two(C and D imaginary solutiong” of Eq. (50) using Eqg. (54) with
who are either both purely imaginary but below, er are  |q|<1, as a function of. Given that solution, the PDF?
complex with the same imaginary pdelso below +), and is explicitly calculated using Eq$53) and(54). Onceqr]Q is
with opposite real parts. In Fig. 4 there are a polgati,  known, we determine the fluctuation functiofj% from Eq.
and branch cuts which we have taken along the imaginary44). We can then investigate the FTs, even for finite
axis, one fromi upward and one fromi-downward. These something which is usually not possible, but is doable in this
cuts come from the logarithmic term in E&4). Finally and  case because the Fourier transform is known exactly for all
most importantly, Fig. 4 shows the paths of steepest descetitne.

Sar S5: &, andS;, through the saddle points, B, C, and D. To see how good the saddle-point expressionaﬂ?rin
These paths were found by haviMpTHEMATICA solve for  Eq. (53) is, we compare it with the numerical results from
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Sec. lll, specifically, the numerically determined Fourier in--1<p<3. We will refer to this as casé), which will be
verse. This is shown in Fig. 5, both for the transient and fordealt with first. The caseg) p<-1 and(c) p>3 will be
the stationary case. In Fig.(®, we choser=2.5 andw  treated later.

=0.5, i.e., not too large, and we are therefore still able to see (a) For —-1<p<3, Eq.(57), when substituted into Eq.
the discrepancies between the saddle-point result and the i(63) usinge; from Eq.(54), yields a zeroth-order solution for
verse Fourier transform fOﬁ'JQ, which are about 15 % near WJQ(p; 7). Becausqu is the maximum oh in Eq. (49), there
the peak, and just a few percents in the tails. In F{@),5ve  is no need to calculatq], as far as the exponehtis con-
choser=5.0, which is still not too large, but we now see that cerned22]. Furthermore, in the prefactor in EG®3), dq,/ dp
the saddle-point method has become quite accurate, up te of order 1, so adding~'dq;/dp gives a correction of
about 7 % in the peak of the distribution, while in the tails relative ordeiO(7 1), i.e., of the same order as the correction
one can hardly distinguish the results from the two methodsterms in Eq.(49). So there is no point to work ouf" to
As T gets larger, the results from these two methods approadhigher orders tharqg. Substituting the expression fmg,
each other even more and plotting them together as in Fig. §iven in Eq.(57), for q" in Eq. (53) and using Eq(54),

would show basically two curves on top of the other. yields
While the numerical methods in Sec. 11l could give us the
large r behavior offJ-Q(p; 7) only for smallp values, using the g 16wr

saddle-point approximation, we can now determine the be”’ (p7) ~

havior of fJ-Q(p; 7) with increasingr for the full range ofp
values. The results are plotted in Fig. 6 and show that both
for the transient and for the stationary case, the fluctuation [(B-p)(1+ p)]3’2
function fJQ approaches the conventional FT only for sngall for-1<p<3, (59)
values. In contrast, for largp values(p>3), a completely
different limit emerges as— «, one where‘JQ(p; 7) appears  With correction terms that are relative@(72).
to approach 2, both for the transient and for the stationary Outside of the range <& p<3, the zeroth-order Ansatz
case. The exact form of this— o limit of fJ.Q(p; 7) is given  in Eq. (57) fails to produce a solution fag’ be}ween +and
by Eq.(68) in Sec. V. +i. The explanation is that the expression fgrin Eq. (57)
was based on neglecting the last two terms on the left-hand
side(lhs) of Eqg. (55), which clearly does not work fgp>3
V. ANALYTIC EXPRESSIONS FOR EXTENDED or p<-1. However, the only way that these terms can be-
FLUCTUATION THEOREMS come comparable to the first term in that equation, is if their
Because we do not find it satisfactory to have the analytidenominators becom@(1) instead ofO(r) as they appear to
cal result of the saddle-point method only in the memory of2€: For this another ansatz than EgB) is necessary. As

MATHEMATICA, we will determine in this section explicitly there are two different denominators in E§S), there are
the leading asymptotic behavior af and corrections as WO cases. In the first case, the denominator of the last term

gets large, using Eq$50), (53), and(54). on thg lhs of EC]*. (55) is _tlaken tO- be O(l?, -i.e.:
To calculate the saddle-point approximation et given ~ 7(1+d)=0(1), or g =+i+0(r"). _'I;he sign ambiguity is
in Eq. (53), we need to find the saddle-poig first. With e, lifted by noting that forq' =-i+O(7), the second term in

e W1 - p?+2(1-p)/(3-p)(1 - p)*-34;}1/4

from Eq.(54), Eq. (50) for q° takes the form Eq. (55 would diverge«=r, so only
Lo, 2A°B-2)+30  3q q = +i+0(Y (59)
q 27i+q")? wr(1+q?) =P is correct. In the second case, the denominator of the second

(55) term on the lhs of Eq.55) is taken to beO(1), i.e.,
ni+q)?=0(1), or

This equation always has foycomple® solutions as ex-
plained below Eq(54). Among these four solutions, one is q=-i+0(r?, (60)
always purely imaginary and lies betweenandi, which is
the one we need, as it corresponds to saddle-@ifsee
preceeding sectionin order to find this solution, we try the
expansion

(b) We first consider the casg =i+0O(7%) of Eq.
(59), which we write for convenience 423]

«_. la
\ q =i+ +0(r?). (61)
i_ w0 - Wt
q =dpt— +0O(7), (56) L . .

T Substituting Eq.(61) into Eqg. (55), and keeping onlyO(1)
whereq, is given by the solution of Eq55) with 7—x, i.e.,  €rMS, one gets -1(8/2a)=p, soa=3/2(p+1), and
1+2iq"=p. Hence 3

. =i+ ————+0O(7)). (62
Gh=i1-pr2. (57) T awApr 1)

Sinceq’ lies between andi, the above zeroth-order solu- Therefore, forp<-1, this is an approximation of the solu-
tion is only appropriate if it lies in that interval, i.e., if tion q" belowi. Using Eqs.(53), (54), and(62), one finds
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%L

log TC]-Q

2-1 01234 2-1012 34 0 1
p p

FIG. 5. Comparison of the saddle-point approximation with the _ FIG. 6. Resullts for the large behavior of(a) f2(p;7) and (b)
numerically obtained solution, far=0.5 and(a) 7=2.5 and(b) =  f3(p;7) for w=1, as found from the saddle-point approximation.
=5. The solid thin line is the transient PDF?(D; 7) as calculated The figures show four lines corresponding to the resultr7fo8, 7
using the saddle-point approximation of Sec. IV and the dashed thif 10, 7=100, andr=1000, as well as a solid black straight li(@
curve is the same PDF calculated using the numerical inverse Fodhat gives the behavior expected from the conventional FT.
rier transform of Sec. 1(8g=2-10%, Qna=2860=52.4288. The
solid bold line is the stationary PDFS(p;T) calculated using the

saddle-point approximation, and the bold dashed curve is that same W2
PDF obtained using the numerical inverse Fourier transform. 7T~Q(p;T) ~ A ——
J 16m(2 - A))?

xXexp) —w| (p=2)7=(2-A)V2(p-3)7
7Ap; 1) ~ /WSTZL? +1] e V-PH-GIAB2 for g < 1 p{ [ J
T

. 40—12p+3Aj(p—4)”
(63 2(p-3) ’

Again, correction terms to this are of rglati_@(r‘l). for p> 3, (65)

(c) Finally, we consider the casg =-i+O(r %) of
Eq.(60) and writeq” =—i+(ib/+7)+(ic/ 7). Note that in prin- .
ciple, we needed to include two correction terms here to gefhereAi=4; has been used to simplify the expression. Due
a similar level of approximation as in Eqgs6) and (61). to the dlfferent form of the expansion gf here, compared
However, as the sum of the first two terie., - +ib/\'7) is to the case$a) and (_bl) this result is valid up to corrections
to leading order the maximum of the exponent, we need nct' relative ordero(7 7).
calculatec [22]. Substitutingg =-i+ib7%2 into Eq. (55), Note that we now have the asymptotic formsﬁ‘ﬁln the
gathering theO(1) terms and using thaA?=A;, we findb ~ three separate regionp,<-1, ~1<p<3 andp=>3 in the

=£(2-A))/2(p-3). We need the posmve solutlon so that EdS-(63), (58), and (65), respectively. This shows that the
q" is above + i.e., behavior in the center of the PDF is Gaussian-like, while in

the tails it is exponential.
. 2 —A. To investigate the FTs, we will now consider the fluctua-
q =-i+i-=——=+0(s"). (64)  tion functions 2. For that, we have to take the above
v 2(p 37 asymptotic expressmns for large but finitéo calculate‘Q of
Note that we neeg@> 3 for this to be purely imaginary, as it EQ. (44) (after which one can take the limit— ). In 'this

should be. Combining Eq$53), (54), and(64) gives way, one finds for the large but finitebehavior offjQ [24]:
|
p
30N 3- p +2p
(8 6A12)p 3 p?-2p +O(r?) forOsp<1
7(9 p°) 2wt
Qp: 7 =
FPiD=Y o1 -pra -7 (p) TZrory)  fori<p<3 (69
2(p-3) Inr
2+(2-4) (p ) _Inr +0(7Y)  forp>3,
. 2W7'
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where proached from below or from above. In fact, expanding Eq.
(66) aroundp=0, we get

1 3
ri(p) = - =In[WA(3 -p)3(1 +p)3(p - 1)/576] - = —3A.
i(p) == JIn[w(3 - p)*(L +p)*(p~ 1)/576] - - (9(pir) = [“%(4 93A _V_1v>}p+o(p2). 69
w(p + 1)(3A; - 2p®+ 8p - 10)
+ 43-p) : (67)  This shows that the critical value fav is We=9/(4-34)),
i.e., w,=9 for the transient andv.=9/4 for the stationary
To obtain Eq.(66), we have used Eq58) for 0<p<1, and case. Fow=w,, the slopgnearp=0) is 1 for finite times(up
we have combined Eqg58) and(63) for 1< p<3, and Eqs. to corrections of orderr2), while the slope of 1 is ap-
(63) and (65) for p>3. Only the cas@=0 is given by Eq. proached for large from above forw>w,, and from below
(66). For p<0, one can use that by the definition E¢4),  for w<w.. In contrast, for the conventional TFT, the slope is
fJ-Q(p; 7) is an odd function op. 1 for all 7, while for the conventional SSFT, at least for the
We remark that as we approach the limits of the range ovork done on the system, the slope always approaches 1
p values for which each of the expressions for the PE;  from above, irrespective of, with increasingr.
[i.e., Egs.(63), (58), and (65)] holds, their rhs’s diverge.
Similarly, the rhs’s of Eq(66) diverge there. These diver-
gences are an artifact of the expansion in inverse powers of VI. DISCUSSION

7, as can be seen because such divergences are not observedy) Thjs paper treats fluctuations in the heat developed in
in Sec. IV (i.e. in Figs. 5 'and 6. 'In fact, for any, a system of a Brownian particle in water, confined by a har-
MATHEMATICA shows us thafj is a continuous and differen- i hotential, which moves at constant velocity through
t!able Iunctlon ofp [21] (with a d|scont|nU|t_y in the denv_a- the fluid, dragging the Brownian particle with it. The theory
tl\ge dq /dp only as7— ), leading to a continuously varying ¢ heat fiyctuations developed in this system was based on an
7-(p; 7) with p. Furthermore, considering the regions@f o ardamped Langevin equation for the position of the par-
values in which Eq(66) differs (due to these divergendes icle. This theory required a far more sophisticated analysis
noticeably from the full saddle-point approximation, oneinan was used in the previous papég] for work fluctua-
finds fromMATHEMATICA that these regions shrink to zero as tjons. It should be mentioned that some of this same sophis-
T . tication is also found in the work of Farago for a quantity

For 7—, the results in Eq(66) become different from both the work and the hefs].

(2) In essence, our theory deals with the fluctuations of
the quantities occurring in the first law of thermodynamics,
limf2(p;7)=1p-(p-1¥4 forl<p<3 (68) je. work, heat and internal energy. The energy balance for
= 2 forp>3. the system is

p forO=sp<1

This is the extension of the conventional FT as it holds for Q,=W,-AU.. (70)

infinite time. Comparing with Eq(49), it is clear that the  are\ s the total work done on the system during a time
conventional FT only holds for not too large fluctuations, .., Q_is the heat produced by the Brownian particle in water
[p| < 1. For largemp, there is first a quadratic deviation after i, yhat time, andAU, is the difference in potential energy of
which the ratio between the probability for positive and for the particle in the harmonic potential in the same time inter-
negative fluctuations becomes a constant. In contrast, for tr\ga| Equation(70), which is basically the first law, can be

. Q . . . . . - . ) i y .
conventional FTf;” keeps increasing linearly with the size of 4 pjied both to averages as well as to fluctuations, because it

the fluctuationp. , , expresses energy conservation, which holds both macro-
Equation(66) gives the extension of the fluctuation theo- scopically and microscopically.
rem forfinite 7. The deviations from the infinite results are (3) The theory gives extensions of the conventional SSFT

of a different character for smallp|<3) and large(lp|>3)  and TFT in Eq.(66). In the limit 7— o, leading to Eq(68),
fluctuations. Thef?(p;7) for large positive fluctuations  thjs new theorem coincides with the conventional TFT and
(p>3) approaches 2 with corrections that scale asr1But  SSFT only for small fluctuationp<1 (as Rey-Bellet and
whereas in the infiniter limit in Eq. (68), the function no  Thomas also found for a different systei®6]), while for
longer grows above 2 beyom3, in the Eq.(66) for finite  |arger fluctuations the behavior is completely different from
7 this function keeps growing to leading order as a squarghe conventional ones. We will now explain the qualitative
root, i.e., fi(p; 7)~ \(p—3)/7. The prefactor of\(p-3)/7  behavior of work and heat fluctuations. For that, it is useful
depends on whether we consider the transient or the statiofirst to consider, in point4) below, the system in equilib-
ary case—it is multiplied by/2 for the former and by 2  rium, i.e., in the situation in which the harmonic confining
for the latter—but it does not depend @n For small fluc-  potential does not move. In poiigh), we then discuss the
tuations, on the other hand, which might be more relevant fononequilibrium case.

many applications, we see corrections to the infimiténit (4) In equilibrium, work, potential energy, and heat be-
of O(7°1), which do depend ow. The value ofv determines have as follows.(i) Work: There is no displacement and
whether the curve starts aroupd 0 above or below the line hence no work is done. Therefore, the PDFWf is a &
with slope 1, and thus also whether the slope of 1 is apfunction: P(W,)=4&(W,). (ii) Potential: The PDF of the po-
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tential energy of the particle in the harmonic potentials  Ref. [6] (mainly due to the infinite available volume in our
given by a Boltzmann factor-exd -U] (kgT=1), since the case rather than the torus in RE8]). It is presently unclear
particle in the harmonic potential can be seen as a subsystetm what extent our model is representative of a larger class of
of a larger one. From this, one sees that the PDRADf.  systems in which heat fluctuations obey the extended FTs.
behaves for larger similarly in its tails, i.e., P(AU,) (9) We derived the extended infiniteFT of Eq. (68)
~exp(—|AU.]). (iii) Heat: For the PDF of the heat fluctua- already in Ref[13] using large deviation theory. In fact, the
tion, using Eq.(70) with W_=0, we see thaQ, also has saddle-point method reduces to the large deviation theory of
exponential tailsP(Q,) ~ exp(—|Q.]). that paper in the limit-— . We will not prove this here, but
(5) We now turn to the nonequilibrium, stationary state remark that if one takes— o in Eq. (54), then one gets

case.(i) Work: the PDF ofW_ is now a GaussiafilZ]. (i)  —q(i-q). Settingg=i\, this becomes\(1-\), which is the
Potential: The PDF oAU is expected to have still exponen- torm of the quantitye(\) used in the large deviation theory
tial tails, at least near equilibrium, Le.P(AU) iy Ref. [13] for [\|<1. The expression breaks down when
~exp(—|AU)). (iii) Heat: The effect of the interplay between o . rection terms togfi—q) in Eq. (54) become infinite,
W, andAU, on the behavior of heat fluctuations can be de- o 51\ = 11 This restriction of\|<1 was also crucial in
duced using Eq(70). We have to separately consider small ;i ining the extended FT in RéL3]. We remark that like-
an |I<'i:lr:ggrfllU?:luzﬁhogswﬁﬁ&adgi\t/g San(;jlcgzlg)ro:'ve(r)]r; ; v;eor; wise, in Fig. 4, the singularities &= i restrict the saddle

g y ’ - Stay ' ’ point to the regiorig| <1, and that this in turn leads to ex-

e o hale U Be O G ety o it ponential tais ofP(Q,), which finally give rise to the exten-

behavior ofQ. is very similar behavior to that oV, i.e.,  Sions of the heat FT. o

Gaussianlike. On the other hand, when a large fluctuation of (10) One of the important and striking results of the ex-
Q, occurs, it is less likely to be due to a large fluctuation oftended FTs is that the probability ratio for negative to posi-
W, than to a large fluctuation afU.. This is so because the tive fluctuations in the heat production by the Brownian par-
tails of the Gaussian PDF fo, are much smaller than the ticle is much larger than that given by the conventional FTs.
exponential tails of the PDF fakU .. As a resultW, will be

near its average whildU . is large. For the sake of the ar- ACKNOWLEDGMENT

gument, we pulV, equal to its averaggW,), which coin-
cides with(Q,) for large . Hence by Eq(70), Q,=~(W,)
-AU,=(Q,—AU.. Using that the PDF foAU, behaves as
exp(—|AU,]) in its tails, we see that the PDF f@, has tails
of the form exg-|Q,—(Q,)|), in agreement with Eqg63)
and(65).

(6) We saw in Ref[12] that the work obeys the conven-
tional FT in the limit7— co. Heat and work fluctuations are  Here, we will determine the Gaussian joint distributions
expected to behave similarly for small fluctuatiaies point  P; of the workW, over a time interval of length from time
5), and therefore the conventional FT is obeyed also by the to t+r and the positions of the Brownian particle at the
heat fluctuations forr—c for small enough fluctuations. beginning,Ax,, and the endAx,,,, where
However, forlarge fluctuations, we get a different behavior.
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APPENDIX A: PDF OF WORK OVER A TIME INTERVAL
AND ENDPOINT POSITIONS

Using P(Q,) ~exp-|Q,—(Q,)|), the fluctuation function Axg=x;=V't. (A1)
f? which is defined by Eq.44) and can be written These are needed for the numerical sampling method in Sec.
as IfP(Q)/P(-Q)]/{Q,) becomes (-|Q,~(Q)+|Q; I as well as in the calculating of the Fourier transform of
+(Qn)/(Q;)=2. This explains qualitatively the behavior ex- P in Eq. (36) which is evaluated in Appendix B. We are
pressed in Eq(68). interested both in the transient case, for whjehT andt

(7) The symmetry relation in Eq40) is very reminiscent =0, and in the stationary state, for whighS andt— .
of the one used by Lebowitz and Spof&j in their work on For notational convenience, we introduce a seven dimen-

the fluctuation theorenii.e., e(\)=e(1-\)], although their sional vectom=(W,,Ax;,AX,). The PDFP} is characterized
method of large deviation theory allows only a treatment ofby the moments
the behavior ofP? and fQ for 7— . The precise connection
between their modelgand the conventional FT they fipd 5:fda Pl(a;na (A2)
and our modeland the extended FY$s not clear. J e

(8) In dynamical systems, microscopic reversibility and . . . .

L . : which is a seven-dimensional vector, and

chaoticity are the requirements for the conventional FTs
[1,2,3. According to Lebowitz and Spohi%], for stochastic . _ _
systems, one only needs that if a stAtean be reached from A= f daP;(a;n(a-a)(a- ai)T- (A3)
a stateB, the reverse process froBito A can also occur. The
SSFT then holds for an abstract “action functional,” whichHere the superscript daggéf) denotes the transpose. It is
resembles the entropy production if detailed balance holdslear from this definition thaf is a real symmetric X7
Our model is stochastic and does obey detailed balance, butatrix. Also, it has deA =0.
it does not fall precisely into one of the classes discussed in Once these moments are knovw, is given by
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o W2(@-a)" A @) a0 ad = lim(Axy)=-V, (A18)
t—oe
V/de(27TA)

Pi(a;7) =

) .. o while the subelements ok are in that case, by Eq§33),
Note that if detA=0, then the PDFP" is aJ function(inone  (34), (A2), (A5), and(A6),

or more directiong

To give the specific form foa and A, we first write A= Im{W, = (W) T2 = (W, - (W) P, (A19)
t—
@
Ej = Ejfz) (A5) Agy = lim([AX; = (Axp J[W, = (W) ], (A20)
EX o
]
(wherea" is a scalar and”’ anda” are three vectojsand A= !ET;QAXW— Axp W= (Wp D), (A21)
Ay AL AL ) .
A = A21 A22 Ag2 (A6) A22 = t'LTC<[AXt - <AXI>][AXI - <AXI>] >! (A22)
A31 A32 A33

. t
(whereAy; is a scalarA,; and A, are three vectorsi,,, A33—t|m<[AXt+T— (AXps N J[AX¢s, = (A% )", (A23)

A,s, andAs;z are 3X 3 matrices.
The specific form fora; for the transient case, i.ear is ) +
obtained using Eqs(8), (18), (30), (31), (A1), (A2), and As2= IM (A = (Axee JIAX = (AXTT), - (A24)
(A5), which yield -
which turn out to be identical to those of the transient case in

& =(Wor=wr-1+e7), (A7) Egs. (A10)«(A15) upon direct evaluation using Egs.
(99«11), (24), (A1), and(A16)—(A18). This is why we did
al? = (Axg) =0, (A8) not denote g dependence oA.
¥ =(Ax)y= (- V. (A9) APPENDIX B: FOURIER TRANSFORM OF 72

The subelements oA for the transient case are explicitly ~ 1he Fourier transform of the PDF of heat will be calcu-
determined from Eqg9)—(11), (19), (30), (31), (A1), (A2), lated here, starting from Eq36). To calculate theP;(q; 7)

and (A5)—A9), giving from that equation, we define the quantities
A=W, - (WyP)r=2w(r-1+e™), (A10) 1
c=|0 (B1)
Az = ([Axo = (Axg) JIW, = (W)]) = (€77 = DV, 0
(A11)
00 O
Azy = ([AX, = (AX )W, = (W] = (7= DV, B={0 1 0 |, (B2)
(A12) 00 -1

A= ([AXg — (Ax) [Axg — (Ax) D =1, A13 so that one can write the exponent in EH®6) as W,
22= (A%~ {axpllLAxo = (Axa)]') (A13) - H{|Ax,>~|Ax, 2 =c-a+3a’ -B-a. Using Eq.(A4), one ob-

tains then
Ags= ([A%, = (Ax)I[AX, = (Ax )] =1, (Al4)
R e—(1/2)(a—gj)T-A’l-(a—EjH(l/2)ian-B-a+iqc-a
_ o Pj(q;r)zfda
Agp= ([AX, = (AX)][AXo = (Axp)]) =€™l. (A1) Vde(27A)
For the stationary case, the specific forms for the compo- (B3)
ts ofac found f Eqs(8), (24), (33), (34), (Al), . L :
?Ae\g),sa(;g?AaSr)e: ound from Eqs(8), (24). (33), (34), (A1) To evaluate this, the exponent is first rewritten as
—a-at Al (a3 + tiga' i
asﬂ):<WT>s:WT, (A16) s@@a-a)'-A™"-(a-aq)+siga’-B-a+iqc-a
=-3@-a)"-[A'-igB]-(a-a)+d;, (B4
a? = lim(Ax) =-V", A17
S Hof v (AL7) wherea/ =[I-iq A-B]™*-(aj+iq A-c) and
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dj:ig[(B-§j+c)T-(|—iqA-B)‘1-(Ej+iqA-c)+§j-c].
(B5)

Here, | is the 7X 7 identity matrix. Then substituting Eqg.
(B4) in Eq. (B3) and changing the integration variablexo

PHYSICAL REVIEW E 69, 056121(2004

in Eq. (B5), and in Eq.(B7), its determinant. These are ob-
tained as follows. Using Eq$A6), (A10)—(A15), and(B2),
it follows that

1 iqe™-v'T ige - v

=a-a] yields I-igA-B=[{0 (I-igl ige™"1
o 0 -ige’"l (1 +ig)l
P. P = f dx e~ (1/2x"(A™'-igB) x B6
i(a;7) \’W (B6) (B8)
edi The determinant of this matrix is
vdetl —ig A-B)
- — — a27\n213
where the identity déa)detB)=de(AB) has been used. To detl-ig A-B)=[1+(1-e)q]". (B9)
make Eq.(B7) into an explicit expression fdP;, the inverse
of the matrix(I-igA-B) is required in the expression fdf  For the inverse of Eq(B8), we get
|
| fae7- D1 +iq(l - eV igl-e[1-ig(l-e )T
1+(1-e2)g? 1+(1-e2)g?
, _ 1+iq -ige’”
- . 110 — [ b
(I-iqg A-B) 1+ —e‘27)q2‘ 1+1-e) (B10)
0 ige™” 1 1-iq
I LA R B
1+(1-e*)g? 1+(1-e)g?

We now have the material needed to calculdtérom Eq.
(B5) explicitly. To calculate Eq(B5), we use EQqs(A5),
(AB), (A10)«(A12), (B1), (B1), (B2), and(B10), to find, af-
ter some rearrangements,

1
— = | . i Tat2) A3
dj_lq{1+(l—e‘27)q2[ ig®w(1-e")®-igea” -3
1—f2)2 ; 1—(3)2 : : _ .
+5[7A(L +ia) - Sfa”*(L —ia) —ia(1 -e[1 +ig
X(1-e )N -a? +ig(1-e)[1-iq(1

—e )V -aj@] +5§1>+iqw(7—1+e-f)}. (B11)

Furthermore, from Eqs(A7)«A9) and (B11), d; for the
transient case follows as

[1 —e"]{l +<% + 2q2)(1 —e‘f)}
1+(1-e)g

dr=waq(i-q)f 7=
(B12)
while using Eqs(A16)—<A18) and(B11), ds for the station-
ary case, is, after some rewriting, found to be
20%(1-€77)?

1q(1—f>} (B13)

ds=wq(i —q){r

Finally, by Eqs(B7) and(B9), these expressions fay yield
for the Fourier transforms explicitly

_ [1-eT1H12+27)(1-e)]
1+(1-e-27¢?

expwd(i — q)(r

Pr(q; 7 .2= [1+(1- e—zf)qz]slz J
(B14)
. 20%(1-e7)?
. expwd(i = A\ 7= L oone
Ps(q;7) = ( e 27 ) (B15)

[1 + (1 _ e—2‘r)q2]3/2
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