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Heat fluctuations over a timet in a nonequilibrium stationary state and in a transient state are studied for a
simple system with deterministic and stochastic components: a Brownian particle dragged through a fluid by a
harmonic potential which is moved with constant velocity. Using a Langevin equation, we find the exact
Fourier transform of the distribution of these fluctuations for allt. By a saddle-point method we obtain
analytical results for the inverse Fourier transform, which, for not too smallt, agree very well with numerical
results from a sampling method as well as from the fast Fourier transform algorithm. Due to the interaction of
the deterministic part of the motion of the particle in the mechanical potential with the stochastic part of the
motion caused by the fluid, the conventional heat fluctuation theorem is, forinfinite and forfinite t, replaced
by an extended fluctuation theorem that differs noticeably and measurably from it. In particular, for large
fluctuations, the ratio of the probability for absorption of heat(by the particle from the fluid) to the probability
to supply heat(by the particle to the fluid) is much larger here than in the conventional fluctuation theorem.
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I. INTRODUCTION

Knowledge of the behavior of heat fluctuations has an
intrinsic value, especially for small systems such as nanosys-
tems and biomolecules, where the fluctuations are relatively
large, but the widespread interest in fluctuation theorems
(FTs) stems mostly from the fact that although there are few
general results in nonequilibrium statistical mechanics, these
theorems seem to provide some. The conventional FTs state
that the probability distribution function(PDF) p for the
average over a timet of a physical quantityA to have a
valuea, satisfies[1–6]

pskAlt = a;td
pskAlt = − a;td

< expfatg, s1d

where kAlt denotes the time average ofA and the depen-
dence of the PDF ont has been explicitly indicated. The
asymmetry in Eq.(1) is caused by some external field that is
present in these models, such that a positive value ofkAlt can
correspond to a behavior “with the field” and a negative
value to a behavior “against the field.” Note that for larget,
positive values fora become much more probable than nega-
tive ones. To be more concrete, in dynamical systems theory,
the quantityA pertains to fluctuations in the “phase space
contraction rate”[3], while in stochastic systems,A involves
an “action functional”[6]. In specific cases, both have been
connected with the heat or entropy production. Such a con-
nection is based on the expression of the phase space con-
traction rate and the action functional, respectively, which
typically have the form of a thermodynamic force times a
current, divided by the temperature of the system[7], i.e., the
same form as the entropy production in irreversible thermo-
dynamics. It is, however, not necessary to make the connec-
tion with the entropy production and in this paper, we will
simply use the heat.

There are in fact two different kinds of FTs: a transient
(TFT) and a stationary state FT(SSFT). While the conven-

tional SSFT only holds for sufficiently large(strictly infinite)
times, the conventional TFT holds as an identity for all times
[8]. Thus, for the SSFT, the< sign in Eq.(1) indicates the
larget behavior, whereas for the TFT, it can be replaced by
an equality sign[9].

Apart from an(early) laboratory experiment on the SSFT
[10], the FTs were restricted to theoretical and simulation
approaches: it was difficult to make laboratory experiments
on macroscopic systems, since the large number of particles
reduces all fluctuations enormously. Recently, Wanget al.
[11] measured a TFT in the laboratory, by studying the mo-
tion of a singleBrownian particle dragged through water by
a laser-induced moving(confining) potential. But while in
Ref. [11] the entropy production(or heat) fluctuations over a
time t were intended to be studied in a transient state, in fact
the fluctuations in the work done on the system during that
time were studied. These differ from the heat fluctuations
due to the joint presence of the confining potential and the
water, as we will explain more clearly later in the paper.
While for this system the conventional SSFT and TFT do
hold for the totalwork done on the system[12], for heat
fluctuations, very different FTs hold, in which the behavior
of large heat deviations is notably and measurably different
from the conventional FTs, as shown in a recent paper[13].
Here we present the full theory underlying the conclusions of
Ref. [13].

The paper is organized as follows. Section II contains the
basic theory. We present the model(Sec. II A), explain the
difference between work and heat in the model(Sec. II B),
and treat the work-related SSFT and TFT fully(Sec. II C).
For the heat fluctuations there is no expression for the PDF
in terms of known functions, but its Fourier transform can be
calculated exactly(Sec. II D). Since this has no known exact
inverse, we first calculate, in Sec. III, the PDF of the fluc-
tuations using two numerical methods: a sampling method as
well as the algorithm of the fast Fourier transform to perform
the inversion of the Fourier transform. The results of both
methods agree well with each other and point to violations of
the conventional SSFT and TFT. Next, this is substantiated
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by an analytic method developed in Sec. IV based on the
saddle-point method, which is shown by a comparison with
the numerical methods, to work well whent is not too small.
In Sec. V we show how this method can be used to obtain
expressions for the extended heat FTs, both in the limit of
t→`, as well as for finite times. We conclude with a discus-
sion of the results in Sec. VI. At the end, two appendices
give some technical details used in the text.

II. BASIC THEORY

A. Model

Theoretical descriptions of the experiment of Wanget al.
[11] have been given even before the experiment by Ma-
zonka and Jarzynski[14], as well as recently by the authors
[12,13]. All were based on an overdamped Langevin equa-
tion for the Brownian particle, which reads

ẋt = − tr
−1sxt − xt

*d + a−1zt. s2d

Here xt is the (three-dimensional) position of the Brownian
particle at timet, a=6phR is the (Stokes) friction of the
particle in water,h is the shear viscosity of water, andR is
the radius of the particle. Furthermore, the relaxation time of
the position of the particle in Eq.(1), tr, equalsa /k, wherek
is the strength of the harmonic force. This force is derived
from the potential

Usx,td =
k

2
ux − xt

* u2, s3d

where xt
* is the position of the minimum of the harmonic

potential at timet, given in our case by

xt
* = v* t s4d

(for t.0) with v* the(constant) velocity of the motion of the
potential through the water. Finally, the random forcezt is
taken to be Gaussian andd function correlated in time:kztl
=0 andkztzsl=2kBTadss− td1. Here, the brackets denote an
average over realizations,T is the temperature,kB is Boltz-
mann’s constant, and1 denotes the 333 identity matrix.

In the rest of this paper, we will use a reduced set of units.
For our time unit we will usetr: thus wherevert appears one
should readt /tr; for our energy unit, we choosekBT and for
our length unit, we use the width of the equilibrium PDF of
xt in the potential, i.e.,ÎkBT/k. This change of units has been
carried through consistently in the paper by simply setting
a=1, k=1, andkBT=1. Then the Langevin equation above in
Eq. (2) takes the simple form

ẋt = − sxt − v* td + zt, s5d

wherezt satisfies

kztl = 0, s6d

kztzsl = 2dst − sd1. s7d

In Ref. [12], the distribution ofxt and its time autocorre-
lation function were determined, under the assumption that
the particle has been in the potential from timet=−` up to

t=0 and that during that time the potential did not move, so
that the initial PDF at timet=0 is the equilibrium one. We
found for the PDF of the positionx of the Brownian particle
at time t,

rsx;td = s2pd−3/2e−ux − v* st − 1 + e−tdu2/2. s8d

The resulting average positionkxtl is therefore

kxtl = v*st − 1 +e−td. s9d

Equations(8) and(9) show that the system is not in equilib-
rium, but that, after a transient time period of order 1(after
which one may neglect the terme−t) the system becomes
stationary in a comoving frame—the PDF shifts to the right
with a constant velocityv* . The mean position of the particle
then becomesv*st−1d, which is not equal to the position of
the minimum of the potential,xt

* =v* t. The difference −v*

shows we are in a stationary state where the average har-
monic force −skxtl−v* td=v* balances the friction force −v* .

Below, we will need the correlations of the position at
different times. For the time-autocorrelation function ofxt,
Ref. [12] gives in current units

kxt2
xt1

l − kxt2
lkxt1

l = e−ut2−t1u1. s10d

B. Work versus heat fluctuations

We first consider the fluctuations in the total work done
on the system. This work is the total amount of energy put
into the system. By the system, we mean here the particle in
the potentialU plus the water. At any time, the harmonic
potential exerts a forceFt=−sxt−v* td on the particle. Conse-
quently, the particle exerts a reaction force −Ft on the poten-
tial. The potential has to be kept moving at a fixed velocity
v* , for which an external force on it of magnitudeFt is re-
quired to balance the reaction force. Hence, the fluctuating
work Wt done on the system over a time interval fromt to
t+t is given by

Wt =E
t

t+t

dt8v* ·Ft8 =E
t

t+t

dt8v* · f− sxt8 − v* t8dg. s11d

We next consider the heatQt and its fluctuations, which in
contrast to the total workWt, is only that part of the work
which goes into the fluid, while the other part of the total
work goes into the potential energy of the particle in the
harmonic potential. Therefore,

Qt = Wt − DUt, s12d

where

DUt = Usxt+t,t + td − Usxt,td. s13d

The potential energyU was given in Eq.(3) [15]. Note that
in Eqs.(11)–(13) we suppressed thet dependence.

Before we discuss the fluctuations in the work and the
heat, we want to say a few words on their average behavior.
Using Eqs.(8) and (11), we find that the average work in a
time interval fromt to t+t is given by
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kWtl = wft − s1 − e−tde−tg, s14d

where

w ; uv* u2. s15d

From Eq.(14), one sees that after a transient timet of Os1d,
the second term within the square brackets can be neglected.
Then, i.e., in the stationary state, the average work iswt,
which means that the rate of workw done on the system is
constant. To calculate the average heat, we use Eq.(12) and
consider first the average potential energy

kUsxt,tdl =E dxrsx,td
1

2
ux − v* tu2 =

3

2
+

1

2
ws1 − e−td2

s16d

[by Eqs.(8) and(15)], from which we find, by Eq.(13), that
kDUtl=wfs1−e−tde−t− 1

2s1−e−2tde−2tg. Combining this with
Eqs.(12) and (14), one obtains

kQtl = wft + 1
2s1 − e−2tde−2tg . s17d

From this equation, we see that for the heat too, after a tran-
sient time ofOs1d, the rate of heat production becomes a
constant. Furthermore, this constant is the same as that for
the work in Eq.(14). So in the stationary state,on average
all work is converted into heat. One might therefore be
tempted to identify heat and work, at least in the stationary
state. However, it will become clear that such identification
is not possiblefor the fluctuationsin work and heat.

C. Distribution of work fluctuations

Here we will briefly summarize the results for the work
fluctuations from Ref.[12] needed in this paper. The work in
Eq. (11) is defined as an integral over the path of the particle.
SinceWt is linear in the pathxt, andxt is Gaussian distrib-
uted, it follows thatWt is Gaussian distributed as well.
Hence, only the first two moments of the PDF need to be
considered.

For the work-related TFT, let us first consider the PDF for
work done on the system during atransient stateof time t,
i.e., for an ensemble of transient trajectories of durationt,
starting in equilibrium att=0 [2,8]. The first moment can
then be found from Eq.(14), with t=0,

kWtlT = wst − 1 +e−td, s18d

where subscript T denotes that the average is over transient
trajectories. The second moment can be calculated as in Ref.
[12], using the relations in Eqs.(8)–(11), to be

kfWt − kWtlg2lT = 2wst − 1 +e−td. s19d

This is exactly twice the average in Eq.(18), which turns out
to be crucial. Given the meanm and the variancev of a
general Gaussian distributed variables, its PDF is given by
Pssd=expf−ss−md2/2vg /Î2pv, hence

Pssd
Ps− sd

= e2ms/v. s20d

If the variance is twice the mean,v=2m, the right-hand side
(rhs) of this equation becomeses, which is of a similar form
as the FT in Eq.(1). To apply this equation to the work
fluctuations in a convenient way, we definep as the average
rate of work in timet, Wt /t, scaled by the average ratew of
work in the stationary state:

p ;
Wt

wt
. s21d

The transient PDFPT
WsWt ;td of Wt and the transient PDF

pT
Wsp;td of p are related by a constant Jacobian:

pT
Wsp;td = wtPT

WsWt;td. s22d

SuperscriptW denotes that these are PDFs related to work.
Using Eq. (20) and the fact that fors=Wt the variance is
twice the mean, one finds the conventional TFT:

pT
Wsp;td

pT
Ws− p;td

= expfWtg = expfwtpg. s23d

Note that the Jacobian drops out on the left-hand side of this
equation. Equation(23) coincides with Eq.(1), with kAlt

=wp, and shows that the TFT holds for work fluctuations. In
fact, it holds exactly(“as an identity”[8]) for all timest.

For the work-related SSFT, one should in principle look at
a single(half-infinite) trajectory in the stationary state, and
consider the statistics of work done in time intervals of
length t along that trajectory. However, because of its sto-
chastic nature, our system behaves ergodically and the dis-
tribution of the initial points of these intervals is simply the
stationary one. Thus, the desired statistics can be determined
by considering a single intervalt of which the initial point is
sampled from the stationary state. In addition, as shown in
the previous sections, the system reaches a stationary state as
t→`, in an exponential fashion. Hence we can generate the
sampling of the initial point of the interval by considering
the intervalft ,t+tg for t→`. In that limit, Eq.(14) gives

kWtlS = wt. s24d

The subscript S denotes that the average is to be taken over
trajectories in the stationary state, in thet→` limit just ex-
plained. The variance can be computed similarly, and the
result is[12]

kfWt − kWtlg2lS = 2wst − 1 +e−td. s25d

Note that now the variance in Eq.(25) is not equal to twice
the mean in Eq.(24), except whent→`. We therefore ex-
pect that only fort→`, we have

pS
Wsp;td

pS
Ws− p;td

< expfWtg = expfwtpg, s26d

wherepS
W is the PDF of the time-averaged scaled workp in

the stationary state. Since the rhs goes to infinity in thet
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→` limit, Eq. (26) is not a well-defined result. A more pre-
cise form of the SSFT is

lim
t→`

fS
Wsp;td = p, s27d

where one defines thework fluctuation functionas

fS
Wsp;td =

1

wt
lnF pS

Wsp;td
pS

Ws− p;tdG . s28d

Indeed, using Eqs.(20), (24), and(25), Eq. (27) follows, i.e.,
the conventional SSFT for the work fluctuations holds[12].

D. Distribution of heat fluctuations

The difficulty in considering the heatQt instead of the
work Wt lies herein, that it is not linear in the position of the
Brownian particle, through the contribution ofU in Eqs.(12)
and (13), which according to Eq.(3) is quadratic inxt. As a
result, the PDF ofQt, denoted byPT

Q in the transient state
and PS

Q in the stationary state(with superscriptQ for heat),
will not be Gaussian and it does not suffice to calculate their
first two moments. Nonetheless, the Fourier transforms of
these PDFs,

P̂jsq;td ; E
−`

`

dQte
iqQtPj

QsQt;td, s29d

canbe explicitly calculated, as will be shown below. Here,j
stands either for T or for S, and this notation will be used
throughout the paper.

Consider first the transient case. We start by considering
the joint PDFPT

* sWt ,Dx1,Dx2;td of Wt, Dx1 andDx2. Here,
Dx1 andDx2 are the positions of the particle relative to the
position of the minimum of the potentialU at times 0 andt,
respectively, i.e.,

Dx1 ; x0, s30d

Dx2 ; xt − v*t. s31d

BecauseWt, Dx1, andDx2 are all linear in the pathxt, PT
* is

Gaussian, so that only its mean and variance are needed.

Using Eqs.(3), (12), and(13), the transient PDFPT
Q of Qt is

related toPT
* sWt ,Dx1,Dx2;td by

PT
QsQt;td =E E E dWtdDx1dDx2PT

* sWt,Dx1,Dx2;td

3 dSQt − Wt +
1

2
fuDx2u2 − uDx1u2gD . s32d

The same can be done for the stationary case. The PDF
PS

* sWt ,Dx1,Dx2;td is defined as the infinite time limit of the
joint PDF of Wt, and the relative positionsDx1 and Dx2
defined by

Dx1 ; xt − v* t, s33d

Dx2 ; xt+t − v*st + td. s34d

Like PT
* , PS

* is Gaussian. FromPS
* , the stationary state PDF

of Qt can be found from

PS
QsQt;td =E E E dWtdDx1dDx2PS

* sWt,Dx1,Dx2;td

3 dSQt − Wt +
1

2
fuDx2u2 − uDx1u2gD . s35d

The mean and variance ofPj
* in Eqs.(32) and (35) are cal-

culated in Appendix A.
Equations(32) and (35) cannot be integrated explicitly,

due to the quadratic nature ofDUt, but their Fourier trans-
forms can be obtained, as is seen when one combines Eq.
(32) or (35) with Eq. (29) to yield

P̂jsq;td =E E E dWtdDx1dDx2Pj
*sWt,Dx1,Dx2;td

3 eiqfWt−suDx2u2−uDx1u2d/2g. s36d

BecausePj
* and eiqfWt−suDx2u2−uDx1u2d/2g are both Gaussian, the

integrals in Eq.(36) can be explicitly performed. The details
of the calculation are given in Appendix B, with the result

P̂jsq;td =

expHwqsi − qdFt −
f1 − e−tgfD j + sD j/2 + 2q2ds1 − e−tdg

1 + s1 − e−2tdq2 GJ
f1 + s1 − e−2tdq2g3/2 , s37d

where for j =T, DT=1, while for j =S, DS=0. The PDFsPj
Q

are related to theP̂jsq;td by the inverse Fourier transform

Pj
QsQt;td =

1

2p
E

−`

`

dq e−iqQtP̂jsq;td. s38d

Before we proceed with the evaluation ofPj
QsQt ;td from

Eqs.(37) and(38), we note that if the conventional FT were

to hold exactly, i.e.,[cf. Eq. (1) with kAlt=Qt /t]

Pj
QsQt;td

Pj
Qs− Qt;td

= eQt, s39d

then, by the definition(29), we would have
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P̂jsq;td = P̂jsi − q;td. s40d

If Eq. (40) does not hold, the fluctuation theorem in Eq.(39)
cannot hold exactly for allt. NeitherP̂Tsq;td nor P̂Ssq;td in
Eq. (37) satisfy Eq.(40). That means we can rule out the
possibility of a TFT or a SSFT for heat fluctuations that
holds as an identity for allt.

The first term in the exponent in Eq.(37) does have the
symmetry in Eq.(40), and this term is the only one that
grows with the timet. However, one cannot conclude from
this that the FTs hold for larget, due to the singularities in
Eq. (37). In the rest of the paper, we will be concerned with
whether Eq.(39) holds, both for transient and stationary
states, fort→`, or, if it does not, what the deviations from
this behavior are. To be precise, similar to the treatment in
Sec. II C, we define the scaled heat fluctuations—denoted by
the same symbolp as scaled work fluctuations—as

p ;
Qt

wt
, s41d

[cf. Eq. (21) and the remark below Eq.(17)]. Its PDF is

p j
Qsp;td = wtPj

Qswtp;td s42d

=
wt

2p
E

−`

`

dqe−iqwtpP̂jsq;td s43d

[cf. Eq. (22)], where Eq.(38) was used. Furthermore, we
define theheat fluctuation function[cf. Eq. (26)]

f j
Qsp;td ;

1

wt
lnF p j

Qsp;td
p j

Qs− p;tdG , s44d

and we investigate whether[cf. Eq. (28)]

lim
t→`

f j
Qsp;td = p s45d

as is required for the conventional FT.

III. NUMERICAL APPROACH

Since no exact Fourier inverse of Eq.(37) is known, we
first treat the problem of finding the PDF of heat fluctuations
numerically.

We used two numerical methods. The first is a sampling
method which starts from the expressions in Eqs.(32) and
(35) that give thePj

Q in terms of thePj
* . From the Gaussian

PDF Pj
* with the mean and variance calculated in Appendix

A, one draws many sets of valuessWt ,Dx1,Dx2d, using a
random number generator[16]. From each set, using Eqs.
(12), (13), and (41), p=sWt−DUtd /wt is calculated. From
thesep values we build a histogram by constructing bins of
width dp in an intervalf−pmax,pmaxg and counting how many
of the values fall into each bin. If the number of sample
pointsNs is large anddp is small, the histogram gives a good
approximation for the PDFp j

Q. As a simple error estimate,
one performs this procedure a few times with varying ran-
dom seeds, and determines the spread in the results.

The second numerical method is the standardfast Fourier

transformalgorithm[16] applied to the inverse Fourier trans-
form. This algorithm takes a discrete set of values of the

function P̂jsqd for q in an intervalf−qmax,qmaxg with equal
spacingdq between theq-values in the interval, and returns
values of the(inverse) transform, i.e., of the functionPj

Q, on
a reciprocal grid of values forQt. If dq is small enough, and
qmax is large enough, this can be used to obtain a good ap-
proximation for the(inverse) Fourier transform. An error es-
timate can be found by varyingdq andqmax and observing to
what extent the results have converged. In all plots in this
paper, these errors would be unobservable and are therefore
not plotted. Note that oncePj

Q is known, by Eq.(42) we can
obtainp j

Q as well.
The results of these two methods for the PDFspT

Q andpS
Q

for the parameter valuesw=2.0 andt=1.0 have been plotted
in Fig. 1 as a function ofp, and the corresponding fluctuation
functionsfT

Q and fS
Q are plotted in the inset in that figure. The

two numerical methods agree very well, but do not agree at
all with the straight line with slope 1 of the conventional FT
[i.e., p cf. Eq. (45)], which is also drawn in the inset in Fig.
1, neither in the stationary nor in the transient case.

To investigate the discrepancies with the conventional FTs
further, we have explored a range of values for the param-
etersw and t, using the two numerical methods. Some re-
sults are shown in Fig. 2. One sees that for large values forp,
deviations off j

Qsp;td from the straight linep of the conven-
tional FT are generic.

Furthermore, Fig. 3 shows(for w=2.0, but the same holds
for other w values) that for larget, the straight line is ap-
proached for smallp, both in the transient and the stationary
case, although the approach is considerably slower for the
former.

IV. ANALYTIC APPROACH—SADDLE POINT METHOD

The numerical methods are not suitable to give reliable
results for the tails of the PDFs for larget. To get around

FIG. 1. The PDFsp j
Q obtained by two numerical methods, for

w=2.0 andt=1.0. Sampling method results(Ns=2 000 000,dp
=0.2) are shown as crosses forpT

Q and as dots forpS
Q, respectively.

Fast Fourier transform results(dq=4310−4, qmax=200) are shown
as a thin dashed line forpT

Q and as a bold dashed line forpS
Q. The

inset shows the corresponding fluctuation functionsf j
Q [Eq. (44)]

and a solid straight line indicating the prediction of the conventional
FT.
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this, we developed an asymptotic analytic approach.
The starting point of the approach is to notice that the

exponent in Eq.(37) grows linearly witht. Thus,p j
Q, given

by Eq. (43), can be written as

p j
Qsp;td =

wt

2p
E

−`

`

dqe−wtfejsq;td+iqpg, s46d

where

ejsq;td ; −
1

wt
lnfP̂jsq;tdg s47d

is of ordert0 [see Eq.(37)]. The presence of a large param-
eter t in Eq. (46) makes it suitable for the saddle-point
method[17], which we will briefly describe now.

To get a good approximation of the integral in Eq.(46),
one considers

hsqd ; − wfejsq;td + iqpg s48d

as a function of a complex-valuedq (where the dependences
of h on j , p, andt are suppressed). Then, one determines its
saddle point, i.e., the complex numberq=q* for which
]h/]q=0. Through this pointq* in the complex plane lies a
path of steepest descent Salong which Imh is constant and
Re h attains a maximum atq* [17]. Next, one continuously
deforms the original path of integrationR (here the real axis)
to this path of steepest descentS without crossing singulari-
ties. The integral overS is for large t dominated by the
(small) segment onS around the saddle pointq* and can be
expanded in inverse powers oft by Taylor expanding the
functionh on Saround the saddle point. For the leading term
one uses a second-order Taylor expansion and finds[17]

E
−`

`

dq ethsqd =Î 2p

tuh9sq*du
ethsq* d+iaf1 + Ost−1dg. s49d

Here,a is the angle between the direction of the pathSwhen
it traverses the saddle point, and the real axis. Furthermore,
h9sq*d is the second derivative ofh with respect toq at the
saddle pointq* , which is assumed to be nonzero. The correc-
tion term in Eq.(49) is Ost−1d, though that strictly applies
only when the functionh does not depend ont. In our case
it does, and we will see that consequently the correction
terms can then beOst−1/2d, although the leading behavior in
Eq. (49) is not affected.

The form ofhsqd in Eq. (48) has the following simplify-
ing consequences for the expression in Eq.(49). First, the
equation for the saddle point,]h/]quq=q* =0, becomes

ej8sq
* ;td = − ip, s50d

whereej8 is the derivative ofej with respect toq. Second,
h9sq*d in Eq. (49) is equal to −wej9sq

*d. This second deriva-
tive can be further simplified by noticing that Eq.(50) holds
for all p, so we can take the derivative with respect top on
both sides to findej9sq

* ;tds]q* /]pd=−i. Hence

uh9sq*du = wuej9sq
* ;tdu = wU ] q*

] p
U−1

. s51d

Third, the approximation is for a PDF, which should be real
and positive. Thus, if the saddle-point method is to be a
consistent calculation of a PDF, we must have

a = 0. s52d

We will prove later that this is indeed the case. Using Eqs.
(48), (51), and(52), we apply the saddle point approximation
Eq. (49) to the integral in Eq.(46) to find

FIG. 2. Numerical results for the fluctuation functionsf j
Q for the

stationarys j =Sd and the transient cases j =Td, for (a) w=1,t=4, (b)
w=2,t=2.5, (c) w=3,t=1.3333, and(d) w=4,t=1. Sampling
method resultssNs=1.23109,dp=0.2d are shown as thin crosses
for fT

Q and as bold dots forfS
Q. Fast fourier transform resultssdq

=4310−4,qmax=200d are shown as the dashed thin curves forfT
Q

and as dashed bold curves forfS
Q. The solid straight line indicates

the prediction of the conventional FT.

FIG. 3. Numerical results for thet dependence of the fluctuation
functions f j

Q for w=2.0 for (a) the transients j =Td and (b) the sta-
tionary cases j =Sd. Sampling resultssNs=1.23109,dp=0.2d are
shown as symbols:s* d t=0.5, s+d t=1, s•d t=2, shd t=4. Fast
Fourier transform resultssdq=4310−4,qmax=200d are shown as
the dashed curves(the t values of these curves are the same as
those of the coinciding sampling points). The solid straight line is
the conventional FT result.
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p j
Qsp;td ,Îwt

2p
U ] q*

] p
Ue−wtfejsq

* ;td+ipq* g. s53d

Here, the symbol, is for convenience used to denote the
asymptotic behavior, instead of explicitly denoting the cor-
rection terms asOst−1d as we did in Eq.(49).

As mentioned above Eq.(49), this method gives an
asymptotic expansion in inverse powers oft. Now if t is
large enough so that terms of relative ordert−1 can be ne-
glected, then terms which are exponentially small int can
also be neglected[18]. Therefore, we use in the definition of
the exponentsej in Eq. (47) the expression of the Fourier

transformP̂jsq;td in Eq. (37) without exponential terms, so
that [19]

ejsq;td = − qsi − qd −
4q3 + 3D jq

2tsi + qd
+

3 lns1 + q2d
2wt

. s54d

When substituted in Eq.(50), we obtain a fourth-order poly-
nomial equation for the saddle points, so that there are four
saddle points. To know which of the four saddle points to
use, one needs to determine their location, the paths of steep-
est descent that traverse them, and to see if our initial inte-
gration line(the real axis) can be deformed to lie on one of
these paths without crossing any singularities.

For three typical values forp we have depicted the four
saddle points ofh for the stationary state in Fig. 4, calculated
analytically by MATHEMATICA [20] which uses Ferrari’s
method for solving the quartic equation[21]. We see in Fig.
4 that for allp there is one saddle pointsAd on the imaginary
axis abovei, one in between −i andi sBd, and two(C and D)
who are either both purely imaginary but below −i, or are
complex with the same imaginary part(also below −i), and
with opposite real parts. In Fig. 4 there are a pole atq=−i,
and branch cuts which we have taken along the imaginary
axis, one fromi upward and one from −i downward. These
cuts come from the logarithmic term in Eq.(54). Finally and
most importantly, Fig. 4 shows the paths of steepest descent
SA, SB, SC, andSD through the saddle pointsA,B,C, and D.
These paths were found by havingMATHEMATICA solve for

lines of constant Imh, where the values of the constant for
Im h are chosen to match the values of Imh at the four
saddle points.

Knowing now the geometry ofh in the complex plane, we
can determine which saddle point to use. One sees that for all
p the pathSB through saddle point B is a possible deforma-
tion of the real axis: each point on the real axis is simply
shifted up or down until it lies on this path and no poles or
other singularities are crossed in doing so. Strictly speaking,
the deformation changes the end points because they get
shifted by an imaginary amountia [wherea can be shown to
be s1−pd /2], but one can add portionsia to the integration
path from −̀ to −`+ ia and from `+ ia to `, and as the
integrand vanishes on these portions, the integral taken over
R and overSB have the same value. This is not true forSA,
SC, andSD.

The graphs in Fig. 4 suggest that the pathSB goes through
B horizontally, i.e., thata=0 as Eq.(52) conjectured. To
prove this, notice that for purely imaginary values forq, i.e.,
q= il, hsild=−wfesil ;td−lpg is real if −1,l,1 [cf. Eq.
(54)]. Hence, the imaginary axis from −i to i is a line of
constant imaginary part ofh. In the saddle point, lines of
constant imaginary part cross perpendicularly[17]. Thus, in
saddle point B, the curve of steepest descent is seen to be
perpendicular to the imaginary axis, i.e., in the direction of
the real axis, so that indeeda=0.

We remark that the above analysis for the stationary case
can be carried through also for the transient case, with only a
slight change in the saddle points.

Our saddle-point method now consists of the following.
We useMATHEMATICA to determine analytically the purely
imaginary solutionq* of Eq. (50) using Eq. (54) with
uq* u,1, as a function ofp. Given that solution, the PDFp j

Q

is explicitly calculated using Eqs.(53) and(54). Oncep j
Q is

known, we determine the fluctuation functionsf j
Q from Eq.

(44). We can then investigate the FTs, even for finitet,
something which is usually not possible, but is doable in this
case because the Fourier transform is known exactly for all
time.

To see how good the saddle-point expression forp j
Q in

Eq. (53) is, we compare it with the numerical results from

FIG. 4. Geometry in the complexq plane of
the saddle points, singularities, and paths of
steepest descent ofhsqd [Eqs. (48) and (54)] for
the stationary statefD j =0g, for w=1, t=4, and
p=−2, 0, and 4.25, respectively. In all graphs,
solid dots depict the position of the saddle points
A, B, C, and D. Wiggly curves give the branch
cuts ending in the branch points atq= ± i which
are indicated with a thin horizontal line. The
branch point at −i is also a pole. The dashed line
R gives the original line of integration, i.e., the
real axis. Solid lines labeledSA, SB, SC, andSD

are paths of steepest descent though the saddle
point, on which Reh attains a maximum.
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Sec. III, specifically, the numerically determined Fourier in-
verse. This is shown in Fig. 5, both for the transient and for
the stationary case. In Fig. 5(a), we choset=2.5 andw
=0.5, i.e., not too large, and we are therefore still able to see
the discrepancies between the saddle-point result and the in-
verse Fourier transform forp j

Q, which are about 15 % near
the peak, and just a few percents in the tails. In Fig. 5(b), we
choset=5.0, which is still not too large, but we now see that
the saddle-point method has become quite accurate, up to
about 7 % in the peak of the distribution, while in the tails
one can hardly distinguish the results from the two methods.
As t gets larger, the results from these two methods approach
each other even more and plotting them together as in Fig. 5
would show basically two curves on top of the other.

While the numerical methods in Sec. III could give us the
larget behavior off j

Qsp;td only for smallp values, using the
saddle-point approximation, we can now determine the be-
havior of f j

Qsp;td with increasingt for the full range ofp
values. The results are plotted in Fig. 6 and show that both
for the transient and for the stationary case, the fluctuation
function f j

Q approaches the conventional FT only for smallp
values. In contrast, for largep valuessp.3d, a completely
different limit emerges ast→`, one wheref j

Qsp;td appears
to approach 2, both for the transient and for the stationary
case. The exact form of thist→` limit of f j

Qsp;td is given
by Eq. (68) in Sec. V.

V. ANALYTIC EXPRESSIONS FOR EXTENDED
FLUCTUATION THEOREMS

Because we do not find it satisfactory to have the analyti-
cal result of the saddle-point method only in the memory of
MATHEMATICA , we will determine in this section explicitly
the leading asymptotic behavior ofp j

Q and corrections ast
gets large, using Eqs.(50), (53), and(54).

To calculate the saddle-point approximation forp j
Q given

in Eq. (53), we need to find the saddle-pointq* first. With ej
from Eq. (54), Eq. (50) for q* takes the form

1 + 2iq* +
4q*2s3 − 2iq*d + 3D j

2tsi + q*d2 −
3iq*

wts1 + q*2d
= p.

s55d

This equation always has four(complex) solutions as ex-
plained below Eq.(54). Among these four solutions, one is
always purely imaginary and lies between −i and i, which is
the one we need, as it corresponds to saddle-pointB (see
preceeding section). In order to find this solution, we try the
expansion

q* = q0
* +

q1
*

t
+ Ost−2d, s56d

whereq0
* is given by the solution of Eq.(55) with t→`, i.e.,

1+2iq* =p. Hence

q0
* = is1 − pd/2. s57d

Sinceq* lies between −i and i, the above zeroth-order solu-
tion is only appropriate if it lies in that interval, i.e., if

−1,p,3. We will refer to this as case(a), which will be
dealt with first. The cases(b) p,−1 and (c) p.3 will be
treated later.

(a) For −1,p,3, Eq.(57), when substituted into Eq.
(53) usingej from Eq.(54), yields a zeroth-order solution for
p j

Qsp;td. Becauseq0
* is the maximum ofh in Eq. (49), there

is no need to calculateq1
* , as far as the exponenth is con-

cerned[22]. Furthermore, in the prefactor in Eq.(53), ]q0
* /]p

is of order 1, so addingt−1]q1
* /]p gives a correction of

relative orderOst−1d, i.e., of the same order as the correction
terms in Eq.(49). So there is no point to work outq* to
higher orders thanq0

* . Substituting the expression forq0
* ,

given in Eq. (57), for q* in Eq. (53) and using Eq.(54),
yields

p j
Qsp;td ,Î16wt

p

3
e−wfts1 − pd2+2s1−pd/s3−pdhs1 − pd2−3D jjg/4

fs3 − pds1 + pdg3/2

for − 1 , p , 3, s58d

with correction terms that are relativelyOst−1d.
Outside of the range −1,p,3, the zeroth-order Ansatz

in Eq. (57) fails to produce a solution forq* between −i and
+i. The explanation is that the expression forq0

* in Eq. (57)
was based on neglecting the last two terms on the left-hand
side(lhs) of Eq. (55), which clearly does not work forp.3
or p,−1. However, the only way that these terms can be-
come comparable to the first term in that equation, is if their
denominators becomeOs1d instead ofOstd as they appear to
be. For this another ansatz than Eq.(56) is necessary. As
there are two different denominators in Eq.(55), there are
two cases. In the first case, the denominator of the last term
on the lhs of Eq. (55) is taken to be Os1d, i.e.,
ts1+q*2d=Os1d, or q* = ± i +Ost−1d. The sign ambiguity is
lifted by noting that forq* =−i +Ost−1d, the second term in
Eq. (55) would diverge~t, so only

q* = + i + Ost−1d s59d

is correct. In the second case, the denominator of the second
term on the lhs of Eq.s55d is taken to beOs1d, i.e.,
tsi +q*d2=Os1d, or

q* = − i + Ost−1/2d. s60d

(b) We first consider the caseq* = i +Ost−1d of Eq.
(59), which we write for convenience as[23]

q* = i +
ia

wt
+ Ost−2d. s61d

Substituting Eq.s61d into Eq. s55d, and keeping onlyOs1d
terms, one gets −1+s3/2ad=p, soa=3/2sp+1d, and

q* = i +
3i

2wtsp + 1d
+ Ost−2d. s62d

Therefore, forp,−1, this is an approximation of the solu-
tion q* below i. Using Eqs.s53d, s54d, ands62d, one finds
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p j
Qsp;td ,Îw3t3up + 1u

36p
e−wf−tp+1−s3/4dD jg+3/2 for p , − 1.

s63d

Again, correction terms to this are of relativeOst−1d.
(c) Finally, we consider the caseq* =−i +Ost−1/2d of

Eq. (60) and writeq* =−i +sib /Îtd+sic /td. Note that in prin-
ciple, we needed to include two correction terms here to get
a similar level of approximation as in Eqs.(56) and (61).
However, as the sum of the first two terms(i.e., −i + ib /Ît) is
to leading order the maximum of the exponent, we need not
calculatec [22]. Substitutingq* =−i + ibt−1/2 into Eq. (55),
gathering theOs1d terms and using thatD j

2=D j, we find b
= ± s2−D jd /Î2sp−3d. We need the positive solution, so that
q* is above −i, i.e.,

q* = − i + i
2 − D j

Î2sp − 3dt
+ Ost−1d. s64d

Note that we needp.3 for this to be purely imaginary, as it
should be. Combining Eqs.s53d, s54d, ands64d gives

p j
Qsp;td ,Î wt2

16ps2 − D jd2

3expH− wFsp − 2dt − s2 − D jdÎ2sp − 3dt

+
40 − 12p + 3D jsp − 4d

2sp − 3d GJ,

for p . 3, s65d

whereD j
2=D j has been used to simplify the expression. Due

to the different form of the expansion ofq* here, compared
to the casessad and sbd, this result is valid up to corrections
of relative orderOst−1/2d.

Note that we now have the asymptotic forms forp j
Q in the

three separate regions,p,−1, −1,p,3 and p.3 in the
Eqs. (63), (58), and (65), respectively. This shows that the
behavior in the center of the PDF is Gaussian-like, while in
the tails it is exponential.

To investigate the FTs, we will now consider the fluctua-
tion functions f j

Q. For that, we have to take the above
asymptotic expressions for large but finitet to calculatef j

Q of
Eq. (44) (after which one can take the limitt→`). In this
way, one finds for the large but finitet behavior off j

Q [24]:

f j
Qsp;td =5p +

s8 − 6D jdp
ts9 − p2d

−

3 ln
3 − p2 + 2p

3 − p2 − 2p

2wt
+ Ost−2d

for 0 ø p , 1

p − s1 − pd2/4 −
ln t

wt
+

r jspd
wt

+ Ost−2d for 1 , p , 3

2 + s2 − D jdÎ2sp − 3d
t

−
ln t

2wt
+ Ost−1d for p . 3,

s66d

FIG. 5. Comparison of the saddle-point approximation with the
numerically obtained solution, forw=0.5 and(a) t=2.5 and(b) t
=5. The solid thin line is the transient PDFpT

Qsp;td as calculated
using the saddle-point approximation of Sec. IV and the dashed thin
curve is the same PDF calculated using the numerical inverse Fou-
rier transform of Sec. IIIsdq=2·10−4,qmax=218dq=52.4288d. The
solid bold line is the stationary PDFpS

Qsp;td calculated using the
saddle-point approximation, and the bold dashed curve is that same
PDF obtained using the numerical inverse Fourier transform.

FIG. 6. Results for the larget behavior of(a) fT
Qsp;td and (b)

fS
Qsp;td for w=1, as found from the saddle-point approximation.

The figures show four lines corresponding to the result fort=3, t
=10, t=100, andt=1000, as well as a solid black straight linespd
that gives the behavior expected from the conventional FT.
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where

r jspd = −
1

2
lnfw2s3 − pd3s1 + pd3sp − 1d/576g −

3

2

+
wsp + 1ds3D j − 2p2 + 8p − 10d

4s3 − pd
. s67d

To obtain Eq.(66), we have used Eq.(58) for 0øp,1, and
we have combined Eqs.(58) and(63) for 1,p,3, and Eqs.
(63) and (65) for p.3. Only the casepù0 is given by Eq.
(66). For p,0, one can use that by the definition Eq.(44),
f j
Qsp;td is an odd function ofp.

We remark that as we approach the limits of the range of
p values for which each of the expressions for the PDFp j

Q,
[i.e., Eqs.(63), (58), and (65)] holds, their rhs’s diverge.
Similarly, the rhs’s of Eq.(66) diverge there. These diver-
gences are an artifact of the expansion in inverse powers of
t, as can be seen because such divergences are not observed
in Sec. IV (i.e., in Figs. 5 and 6. In fact, for anyt,
MATHEMATICA shows us thatq* is a continuous and differen-
tiable function ofp [21] (with a discontinuity in the deriva-
tive ]q* /]p only ast→`), leading to a continuously varying
p j

Qsp;td with p. Furthermore, considering the regions ofp
values in which Eq.(66) differs (due to these divergences)
noticeably from the full saddle-point approximation, one
finds fromMATHEMATICA that these regions shrink to zero as
t→`.

For t→`, the results in Eq.(66) become

lim
t→`

f j
Qsp;td = 5p for 0 ø p , 1

p − sp − 1d2/4 for 1, p , 3

2 for p . 3.

s68d

This is the extension of the conventional FT as it holds for
infinite time. Comparing with Eq.(45), it is clear that the
conventional FT only holds for not too large fluctuations, i.e.,
upu,1. For largerp, there is first a quadratic deviation after
which the ratio between the probability for positive and for
negative fluctuations becomes a constant. In contrast, for the
conventional FT,f j

Q keeps increasing linearly with the size of
the fluctuationp.

Equation(66) gives the extension of the fluctuation theo-
rem forfinite t. The deviations from the infinitet results are
of a different character for smallsupu,3d and largesupu.3d
fluctuations. The f j

Qsp;td for large positive fluctuations
sp.3d approaches 2 with corrections that scale as 1/Ît. But
whereas in the infinitet limit in Eq. (68), the function no
longer grows above 2 beyondp=3, in the Eq.(66) for finite
t this function keeps growing to leading order as a square
root, i.e., f j

Qsp;td,Îsp−3d /t. The prefactor ofÎsp−3d /t
depends on whether we consider the transient or the station-
ary case—it is multiplied byÎ2 for the former and by 2Î2
for the latter—but it does not depend onw. For small fluc-
tuations, on the other hand, which might be more relevant for
many applications, we see corrections to the infinitet limit
of Ost−1d, which do depend onw. The value ofw determines
whether the curve starts aroundp=0 above or below the line
with slope 1, and thus also whether the slope of 1 is ap-

proached from below or from above. In fact, expanding Eq.
(66) aroundp=0, we get

f j
Qsp;td = F1 +

2

t
S4 − 3D j

9
−

1

w
DGp + Osp2d. s69d

This shows that the critical value forw is wc=9/s4−3D jd,
i.e., wc=9 for the transient andwc=9/4 for thestationary
case. Forw=wc, the slope(nearp=0) is 1 for finite times(up
to corrections of ordert−2), while the slope of 1 is ap-
proached for larget from above forw.wc, and from below
for w,wc. In contrast, for the conventional TFT, the slope is
1 for all t, while for the conventional SSFT, at least for the
work done on the system, the slope always approaches 1
from above, irrespective ofw, with increasingt.

VI. DISCUSSION

(1) This paper treats fluctuations in the heat developed in
a system of a Brownian particle in water, confined by a har-
monic potential, which moves at constant velocity through
the fluid, dragging the Brownian particle with it. The theory
of heat fluctuations developed in this system was based on an
overdamped Langevin equation for the position of the par-
ticle. This theory required a far more sophisticated analysis
than was used in the previous paper[12] for work fluctua-
tions. It should be mentioned that some of this same sophis-
tication is also found in the work of Farago for a quantity
different from both the work and the heat[25].

(2) In essence, our theory deals with the fluctuations of
the quantities occurring in the first law of thermodynamics,
i.e., work, heat and internal energy. The energy balance for
the system is

Qt = Wt − DUt. s70d

HereWt is the total work done on the system during a time
t, Qt is the heat produced by the Brownian particle in water
in that time, andDUt is the difference in potential energy of
the particle in the harmonic potential in the same time inter-
val. Equations70d, which is basically the first law, can be
applied both to averages as well as to fluctuations, because it
expresses energy conservation, which holds both macro-
scopically and microscopically.

(3) The theory gives extensions of the conventional SSFT
and TFT in Eq.(66). In the limit t→`, leading to Eq.(68),
this new theorem coincides with the conventional TFT and
SSFT only for small fluctuationsp,1 (as Rey-Bellet and
Thomas also found for a different system[26]), while for
larger fluctuations the behavior is completely different from
the conventional ones. We will now explain the qualitative
behavior of work and heat fluctuations. For that, it is useful
first to consider, in point(4) below, the system in equilib-
rium, i.e., in the situation in which the harmonic confining
potential does not move. In point(5), we then discuss the
nonequilibrium case.

(4) In equilibrium, work, potential energy, and heat be-
have as follows.(i) Work: There is no displacement and
hence no work is done. Therefore, the PDF ofWt is a d
function: PsWtd=dsWtd. (ii ) Potential: The PDF of the po-
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tential energy of the particle in the harmonic potentialU is
given by a Boltzmann factor,expf−Ug skBT=1d, since the
particle in the harmonic potential can be seen as a subsystem
of a larger one. From this, one sees that the PDF ofDUt
behaves for larget similarly in its tails, i.e., PsDUtd
,exps−uDUtud. (iii ) Heat: For the PDF of the heat fluctua-
tion, using Eq.(70) with Wt=0, we see thatQt also has
exponential tails:PsQtd,exps−uQtud.

(5) We now turn to the nonequilibrium, stationary state
case.(i) Work: the PDF ofWt is now a Gaussian[12]. (ii )
Potential: The PDF ofDUt is expected to have still exponen-
tial tails, at least near equilibrium, i.e.,PsDUtd
,exps−uDUtud. (iii ) Heat: The effect of the interplay between
Wt andDUt on the behavior of heat fluctuations can be de-
duced using Eq.(70). We have to separately consider small
and large fluctuations. For larget, Wt andQt grow on aver-
age linearly in time, whileDUt stays ofOs1d. Hence, for
small fluctuations of these quantities(near their averages)
one can neglectDUt in Eq. (70), so thatQt<Wt, and the
behavior ofQt is very similar behavior to that ofWt, i.e.,
Gaussianlike. On the other hand, when a large fluctuation of
Qt occurs, it is less likely to be due to a large fluctuation of
Wt than to a large fluctuation ofDUt. This is so because the
tails of the Gaussian PDF forWt are much smaller than the
exponential tails of the PDF forDUt. As a result,Wt will be
near its average whileDUt is large. For the sake of the ar-
gument, we putWt equal to its average,kWtl, which coin-
cides with kQtl for large t. Hence by Eq.(70), Qt<kWtl
−DUt=kQtl−DUt. Using that the PDF forDUt behaves as
exps−uDUtud in its tails, we see that the PDF forQt has tails
of the form exps−uQt−kQtlud, in agreement with Eqs.(63)
and (65).

(6) We saw in Ref.[12] that the work obeys the conven-
tional FT in the limitt→`. Heat and work fluctuations are
expected to behave similarly for small fluctuations(cf. point
5), and therefore the conventional FT is obeyed also by the
heat fluctuations fort→` for small enough fluctuations.
However, forlarge fluctuations, we get a different behavior.
Using PsQtd,exps−uQt−kQtlud, the fluctuation function
f j
Q which is defined by Eq.(44) and can be written

as lnfPsQtd /Ps−Qtdg / kQtl becomes s−uQt−kQtlu+ uQt

+kQtlud / kQtl=2. This explains qualitatively the behavior ex-
pressed in Eq.(68).

(7) The symmetry relation in Eq.(40) is very reminiscent
of the one used by Lebowitz and Spohn[6] in their work on
the fluctuation theorem[i.e., esld=es1−ld], although their
method of large deviation theory allows only a treatment of
the behavior ofPj

Q and f j
Q for t→`. The precise connection

between their models(and the conventional FT they find),
and our model(and the extended FTs) is not clear.

(8) In dynamical systems, microscopic reversibility and
chaoticity are the requirements for the conventional FTs
[1,2,3]. According to Lebowitz and Spohn[6], for stochastic
systems, one only needs that if a stateA can be reached from
a stateB, the reverse process fromB to A can also occur. The
SSFT then holds for an abstract “action functional,” which
resembles the entropy production if detailed balance holds.
Our model is stochastic and does obey detailed balance, but
it does not fall precisely into one of the classes discussed in

Ref. [6] (mainly due to the infinite available volume in our
case rather than the torus in Ref.[6]). It is presently unclear
to what extent our model is representative of a larger class of
systems in which heat fluctuations obey the extended FTs.

(9) We derived the extended infinite-t FT of Eq. (68)
already in Ref.[13] using large deviation theory. In fact, the
saddle-point method reduces to the large deviation theory of
that paper in the limitt→`. We will not prove this here, but
remark that if one takest→` in Eq. (54), then one gets
−qsi −qd. Settingq= il, this becomesls1−ld, which is the
form of the quantityesld used in the large deviation theory
in Ref. [13] for ulu,1. The expression breaks down when
the correction terms to −qsi −qd in Eq. (54) become infinite,
i.e., atl= ±1. This restriction ofulu,1 was also crucial in
obtaining the extended FT in Ref.[13]. We remark that like-
wise, in Fig. 4, the singularities atq= ± i restrict the saddle
point to the regionuqu,1, and that this in turn leads to ex-
ponential tails ofPsQtd, which finally give rise to the exten-
sions of the heat FT.

(10) One of the important and striking results of the ex-
tended FTs is that the probability ratio for negative to posi-
tive fluctuations in the heat production by the Brownian par-
ticle is much larger than that given by the conventional FTs.
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APPENDIX A: PDF OF WORK OVER A TIME INTERVAL
AND ENDPOINT POSITIONS

Here, we will determine the Gaussian joint distributions
Pj

* of the workWt over a time interval of lengtht from time
t to t+t and the positions of the Brownian particle at the
beginning,Dxt, and the end,Dxt+t, where

Dxt = xt − v* t. sA1d

These are needed for the numerical sampling method in Sec.
III as well as in the calculating of the Fourier transform of
Pj

Q in Eq. (36) which is evaluated in Appendix B. We are
interested both in the transient case, for whichj =T and t
=0, and in the stationary state, for whichj =S andt→`.

For notational convenience, we introduce a seven dimen-
sional vectora=sWt ,Dx1,Dx2d. The PDFPj

* is characterized
by the moments

āj =E da Pj
*sa;tda, sA2d

which is a seven-dimensional vector, and

A =E da Pj
*sa;tdsa − ājdsa − ājd†. sA3d

Here the superscript daggers†d denotes the transpose. It is
clear from this definition thatA is a real symmetric 737
matrix. Also, it has detAù0.

Once these moments are known,P* is given by

EXTENDED HEAT-FLUCTUATION THEOREMS FOR A… PHYSICAL REVIEW E 69, 056121(2004)

056121-11



Pj
*sa;td =

e−s1/2dsa − ājd
†·A−1·sa−ājd

Îdets2pAd
. sA4d

Note that if detA=0, then the PDFP* is ad function (in one
or more directions).

To give the specific form fora andA, we first write

āj = 1āj
s1d

āj
s2d

āj
s3d 2 sA5d

(whereāj
s1d is a scalar andāj

s2d andāj
s3d are three vectors) and

A = 1A11 A21
† A31

†

A21 A22 A32
†

A31 A32 A33
2 sA6d

(whereA11 is a scalar,A21 and A31 are three vectors,A22,
A23, andA33 are 333 matrices).

The specific form forāj for the transient case, i.e.,āT is
obtained using Eqs.(8), (18), (30), (31), (A1), (A2), and
(A5), which yield

āT
s1d = kWtlT = wst − 1 +e−td, sA7d

āT
s2d = kDx0l = 0, sA8d

āT
s3d = kDxtl = se−t − 1dv* . sA9d

The subelements ofA for the transient case are explicitly
determined from Eqs.(9)–(11), (19), (30), (31), (A1), (A2),
and (A5)–(A9), giving

A11 = kfWt − kWtlg2lT = 2wst − 1 +e−td, sA10d

A21 = kfDx0 − kDx0lgfWt − kWtlgl = se−t − 1dv* ,

sA11d

A31 = kfDxt − kDxtlgfWt − kWtlgl = se−t − 1dv* ,

sA12d

A22 = kfDx0 − kDx0lgfDx0 − kDx0lg†l = 1, sA13d

A33 = kfDxt − kDxtlgfDxt − kDxtlg†l = 1, sA14d

A32 = kfDxt − kDxtlgfDx0 − kDx0lg†l = e−t1. sA15d

For the stationary case, the specific forms for the compo-
nents ofāS are found from Eqs.(8), (24), (33), (34), (A1),
(A2), and(A5):

āS
s1d = kWtlS = wt, sA16d

āS
s2d = lim

t→`
kDxtl = − v* , sA17d

āS
s3d = lim

t→`
kDxt+tl = − v* , sA18d

while the subelements ofA are in that case, by Eqs.(33),
(34), (A2), (A5), and(A6),

A11 = lim
t→`

kfWt − kWtlg2l = kfWt − kWtlg2lS, sA19d

A21 = lim
t→`

kfDxt − kDxtlgfWt − kWtlgl, sA20d

A31 = lim
t→`

kfDxt+t − kDxt+tlgfWt − kWtlgl, sA21d

A22 = lim
t→`

kfDxt − kDxtlgfDxt − kDxtlg†l, sA22d

A33 = lim
t→`

kfDxt+t − kDxt+tlgfDxt+t − kDxt+tlg†l, sA23d

A32 = lim
t→`

kfDxt+t − kDxt+tlgfDxt − kDxtlg†l, sA24d

which turn out to be identical to those of the transient case in
Eqs. (A10)–(A15) upon direct evaluation using Eqs.
(9)–(11), (24), (A1), and (A16)–(A18). This is why we did
not denote aj dependence ofA.

APPENDIX B: FOURIER TRANSFORM OF pj
Q

The Fourier transform of the PDF of heat will be calcu-

lated here, starting from Eq.(36). To calculate theP̂jsq;td
from that equation, we define the quantities

c = 11

0

0
2 sB1d

B = 10 0 0

0 1 0

0 0 − 1
2 , sB2d

so that one can write the exponent in Eq.(36) as Wt

− 1
2huDx2u2− uDx1u2j=c·a+ 1

2a†·B ·a. Using Eq.(A4), one ob-
tains then

P̂jsq;td =E da
e−s1/2dsa − ājd

†·A−1·sa−ājd+s1/2diqa†·B·a+iqc·a

Îdets2pAd
.

sB3d

To evaluate this, the exponent is first rewritten as

− 1
2sa − ājd† ·A−1 · sa − ājd + 1

2iqa† ·B ·a + iqc ·a

= − 1
2sa − aj8d

† · fA−1 − iqBg · sa − aj8d + dj , sB4d

whereaj8=fI− iq A ·Bg−1·sāj + iq A ·cd and
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dj =
iq

2
fsB · āj + cd† · sI − iq A ·Bd−1 · sāj + iq A ·cd + āj ·cg.

sB5d

Here, I is the 737 identity matrix. Then substituting Eq.
(B4) in Eq. (B3) and changing the integration variable tox
=a−aj8 yields

P̂jsq;td =E dx e−s1/2dx†·sA−1−iqBd·x edj

Îdets2pAd
sB6d

=
edj

ÎdetsI − iq A ·Bd
, sB7d

where the identity detsAddetsBd=detsABd has been used. To

make Eq.(B7) into an explicit expression forP̂j, the inverse
of the matrixsI− iqA ·Bd is required in the expression fordj

in Eq. (B5), and in Eq.(B7), its determinant. These are ob-
tained as follows. Using Eqs.(A6), (A10)–(A15), and(B2),
it follows that

I − iq A ·B = 11 iqse−t − 1dv*† iqse−t − 1dv*†

0 s1 − iqd1 iqe−t1

0 − iqe−t1 s1 + iqd1
2 .

sB8d

The determinant of this matrix is

detsI − iq A ·Bd = f1 + s1 − e−2tdq2g3. sB9d

For the inverse of Eq.(B8), we get

sI − iq A ·Bd−1 =1
1

iqse−t − 1df1 + iqs1 − e−tdgv*†

1 + s1 − e−2tdq2

iqs1 − e−tdf1 − iqs1 − e−tdgv*†

1 + s1 − e−2tdq2

0
1 + iq

1 + s1 − e−2tdq21
− iqe−t

1 + s1 − e−2tdq21

0
iqe−t

1 + s1 − e−2tdq21
1 − iq

1 + s1 − e−2tdq21
2 . sB10d

We now have the material needed to calculatedj from Eq.
(B5) explicitly. To calculate Eq.(B5), we use Eqs.(A5),
(A6), (A10)–(A12), (B1), (B1), (B2), and(B10), to find, af-
ter some rearrangements,

dj = iqH 1

1 + s1 − e−2tdq2F− iq3ws1 − e−td3 − iqe−tāj
s2d · āj

s3d

+
1

2
uāj

s2du2s1 + iqd −
1

2
uāj

s3du2s1 − iqd − iqs1 − e−tdf1 + iq

3s1 − e−tdgv* · āj
s2d + iqs1 − e−tdf1 − iqs1

− e−tdgv* · āj
s3dG + āj

s1d + iqwst − 1 +e−tdJ . sB11d

Furthermore, from Eqs.(A7)–(A9) and (B11), dT for the
transient case follows as

dT = wqsi − qd5t −

f1 − e−tgF1 +S1

2
+ 2q2Ds1 − e−tdG

1 + s1 − e−2tdq2 6
sB12d

while using Eqs.(A16)–(A18) and(B11), dS for the station-
ary case, is, after some rewriting, found to be

dS = wqsi − qdHt −
2q2s1 − e−td2

1 + q2s1 − e−2tdJ . sB13d

Finally, by Eqs.(B7) and(B9), these expressions fordj yield
for the Fourier transforms explicitly

P̂Tsq;td .2=
expwqsi − qdst −

f1−e−tgf1+s1/2+2q2ds1−e−tdg
1+s1−e−2tdq2 d

f1 + s1 − e−2tdq2g3/2 ,

sB14d

P̂Ssq;td =
expwqsi − qdst −

2q2s1−e−td2

1+s1−e−2tdq2d
f1 + s1 − e−2tdq2g3/2 . sB15d

EXTENDED HEAT-FLUCTUATION THEOREMS FOR A… PHYSICAL REVIEW E 69, 056121(2004)

056121-13



[1] D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Phys. Rev.
Lett. 71, 2401(1993).

[2] D. J. Evans and D. J. Searles, Phys. Rev. E50, 1645(1994).
[3] G. Gallavotti and E. G. D. Cohen, Phys. Rev. Lett.74, 2694

(1995); J. Stat. Phys.80, 931 (1995).
[4] E. G. D. Cohen, Physica A240, 43 (1997).
[5] J. Kurchan, J. Phys. A31, 3719(1998).
[6] J. L. Lebowitz and H. Spohn, J. Stat. Phys.95, 333 (1999).
[7] The dynamical systems are required to have an isoenergetic

Gaussian thermostat for this to be strictly true, otherwise cor-
rection terms appear, though these might possibly vanish in the
large time or system size limit.

[8] E. G. D. Cohen and G. Gallavotti, J. Stat. Phys.96, 1343
(1999).

[9] Also, the integrated TFT and SSFT exist[11,12], which we do
not discuss here since they are constructed only to improve the
statistics in experiments or simulations.

[10] S. Ciliberto and C. Laroche, J. Phys. IV8(6), 215 (1998).
[11] G. M. Wanget al., Phys. Rev. Lett.89, 050601(2002).
[12] R. van Zon and E. G. D. Cohen, Phys. Rev. E67, 046102

(2003).
[13] R. van Zon and E. G. D. Cohen, Phys. Rev. Lett.91, 110601

(2003).
[14] O. Mazonka and C. Jarzynski, e-print cond-mat/9912121.
[15] In Eq. (12) the possibility of energy being stored as kinetic

energy of the Brownian particle has been neglected. While this
in principle should be included, fluctuations in velocity decay
on a time scale!1 in the overdamped case, so that we may
neglect them on time scales ofOs1d.

[16] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-
nery,Numerical Recipes in Fortran, The Art of Scientific Com-
puting, 2nd ed. (Cambridge University Press, Cambridge,
1992).

[17] H. Jeffreys and B. S. Jeffreys,Methods of Mathematical Phys-
ics, 3rd ed.(Cambrige University Press, Cambridge, 1956); P.
Dennery and A. Krzywicki, Mathematics for Physicists
(Harper and Row, New York, 1967). L. Sirovich,Techniques of
Asymptotic Analysis(Springer-Verlag, New York, 1971).

[18] We have verified using the numerical fast Fourier transform

inverse of Sec. III, that neglecting the exponential terms in the

Fourier transformP̂j in Eq. (37) has negligible consequences
for p j

Q in Eq. (38) if t*3.
[19] With exponential terms neglected in Eq.(37), Pjsq;td behaves

as expf−st−2dq2g for largeq, so that on the rhs of Eq.(38) the
integral for the Fourier inverse diverges fort,2. This is an
artifact of neglecting the exponentials.

[20] S. Wolfram, The Mathematica Book(Cambridge University
Press, Cambridge, 1999).

[21] It is useful to have an analytic result for the saddle points in
MATHEMATICA ’s memory because this shows thatq* is a
smooth function ofp and allows for the derivative]q* /]p
needed in Eq.(53) to be obtained as well.

[22] Corrections to the position of the saddle point are here of
higher order. To see this, let us split uph in Eq. (49) as h0

+dh, and the position of the maximum ofh asq* =x+dx. As-
sumingdx and dh to scale ast−a and t−b, respectively, with
a ,b.0, we expand hsq*d=hsxd+dh8sxddx+h09sxddx2/2
+dh9sxddx2/2+¯, usingh08sxd=0. The terms in this expansion
are Os1d, Ost−a−bd, Ost−2ad, and Ost−2a−bd, respectively, so
that hsq*d=hsxd+Ost−a−minsa,bdd.

[23] In case(b), the zeroth orderi for q* is to zeroth order a maxi-
mum ofh at theboundaryof the interval from −i to i, implying
that its derivative need not be zero there. Hence, the argument
in [22] does not go through and we need to keep theOst−1d
correction in Eq.(61).

[24] In general, ind dimensions, the corresponding expressions are
found by changing 3/2 tod/2 in the denominator on the rhs of
Eq. (37) and carrying through the calculation. For the fluctua-
tion function, this amounts to replacing the prefactor “3” of the
logarithm byd in the first line of Eq.(66) and to adding pre-
factors sd−1d /2 to the logarithmic terms lnt / swtd and
ln t / s2wtd in its second and third lines, respectively. In Eq.
(67), the last term remains the same, but the first two become
−1

2lnfw2d1−ds3−pdds1+pddsp−1dd−2/64g and −d/2, resp. Fi-
nally, in Eq. (69) 1/w becomesd/ s3wd.

[25] J. Farago, J. Stat. Phys.107, 781 (2002).
[26] L. Rey-Bellet and L. E. Thomas, Ann. Henri Poincare3, 483

(2002); L. Rey-Bellet, e-print math-ph/0303021.

R. VAN ZON AND E. G. D. COHEN PHYSICAL REVIEW E69, 056121(2004)

056121-14


