
Glassy dynamics and domains: Explicit results for the East model
Ramses van Zona!

The Rockefeller University, 1230 York Avenue, New York, New York 10021 and Chemical Physics Theory
Group, Department of Chemistry, University of Toronto, Ontario, Canada M5S 3H6

Jeremy Schofield
Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Ontario,
Canada M5S 3H6

sReceived 8 December 2004; accepted 2 March 2005; published online 13 May 2005d

A general matrix-based scheme for analyzing the long-time dynamics in kinetically constrained
models such as the East model is presented. The treatment developed here is motivated by the
expectation that slowly relaxing spin domains of arbitrary size govern the highly cooperative events
that lead to spin relaxation at long times. To account for the role of large spin domains in the
dynamics, a complete basis expressed in terms of domains of all sizes is introduced. It is first
demonstrated that accounting for single domains of all possible sizes leads to a simple analytical
result for the two-time single-spin correlation function in the East model that is in excellent
quantitative agreement with simulation data for equilibrium spin-up density valuescù0.6. It is then
shown that including also two neighboring domains leads to a closed expression that describes the
slow relaxation of the system down toc<0.3. Ingredients of generalizing the method to lower
values ofc are also provided, as well as to other models. The main advantage of this approach is that
it gives explicit analytical results and that it requires neither an arbitrary closure for the memory
kernel nor the construction of an irreducible memory kernel. It also allows one to calculate
quantities that measure heterogeneity in the same framework, as is illustrated on the neighbor-pair
correlation function, the average relaxation time, and the width of the distribution of relaxation
times. ©2005 American Institute of Physics. fDOI: 10.1063/1.1897372g

I. INTRODUCTION

Despite much progress in recent years, many aspects of
structural glasses and undercooled liquids still escape a com-
plete understanding.1–4 Rather than studying the behavior of
molecular glasses, one often investigates the behavior of
simple models in the hope to capture the basic physics of
such systems. The so-called East model is one of these
simple models.5 It is a classic Ising model with a trivial
Hamiltonian in which the stochastic dynamics governing the
change of spin leads to a complicated and highly cooperative
evolution of the system. In the East model, any spin has
finite probability to flip from up to down or vice versa only if
the spin to the east of itsi.e., of higher lattice indexd is up.
Models of this kind are generally called kinetically con-
strained models or facilitating spin models.6–10

Such models are designed to mimic10–13 the kind of dy-
namics that take place in glasses.4 Although the East model
itself does not have a glass transition at any finite spin
density,5 the decay of the single-spin time correlation func-
tion at low densities is a stretched exponential,7,14 following
a functional form similar to that of the dynamic structure
factor in glassy systems.15–17 In fact, the typical spin-
relaxation time has been shown to behave as logt
, log2s1/cd, wherec is the equilibrium density of up spins,
heuristically by Sollich and Evans18 and rigorously by Al-
dous and Diaconis,19 indicating an extreme slowing down for

smallc, suggestive of a transition atc=0. More recently, the
East model has been analyzed to examine the nature of dy-
namic heterogeneities11,12 in frustrated systems.

The typical relaxation times present in systems exhibit-
ing frustration can be retrieved from time correlation func-
tions. In glasses, mode-coupling theory is one of the pre-
dominant descriptions for these correlation functions.
Several approaches to mode-coupling theories exist. In the
context of glasses, that of Götze and co-workers16,20–29and
Leutheusser30 has been widdy used.

The approach of Götze and co-workers and Leutheusser
expresses the time correlation functions in terms of a
memory kernel and then uses a certain ansatz in which the
memory function is written in terms of the correlation func-
tions themselves, yielding self-consistent equations. Oppen-
heim and co-workers have addressed the formal points and
justification of mode-coupling theories in Fourier space.31–34

Along similar lines, Andersen35 has formulated a phase-
space mode-coupling theory for general fluids that leads to
self-consistent equations for time-dependent correlation
functions.

Mode-coupling theory can be applied for both determin-
istic and stochastic systems. For some systems, such as the
East model, the application of the most commonly used
mode-coupling ansatz necessary to close the resulting equa-
tion of motion for the spin-autocorrelation function leads to a
spurious transition from an ergodic to a nonergodic phase at
finite values of the spin concentrationc, a result that is
clearly at odds with simulation results. To analyze the failureadElectronic mail: vanzonr@rockefeller.edu
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of the closure approximation in mode-coupling theory, Pitts
and Andersen have presented a diagrammatic treatment that
yields similar equations to those of mode-coupling theories
of the glass transition.9 This treatment lends itself to a clo-
sure assumption that is very similar in kind to the mode-
coupling theory of Götze and co-workers and Leutheusser.
Pitts and Andersen propose alternative closure assumptions
to this mode-coupling theory by summing subsets of dia-
grams. The resulting predictions are in good agreement with
simulations for high concentration of up spins, but still decay
too rapidly at lower spin density. Recent improvements on
this scheme have been carried out by Wu and Cao14 based on
a combination of matrix methods and mode-coupling closure
assumptions.

Regardless of the precise formalism, mode-coupling
theories aim to describe slow long-time behavior, and so
should include all the “slow modes” of the system. For hy-
drodynamics of a simple fluid at moderate densities, these
slow modes are well known, namely, the density, momen-
tum, and energy modes at large wavelengths. Correspond-
ingly, when applied to Fourier modes of these hydrodynami-
cal fields, mode-coupling theoryse.g., in the formulation of
Oppenheim and co-workersd yields well-defined perturbative
results when the correlation length is finite and the thermo-
dynamic limit is taken. However, in the case of the East
model, the relevant slow modes are less obvious, and previ-
ously developed mode-coupling theories for this
model5,8,9,14,36may have missed some of these slow modes.
In fact the absence of some slow modes provides a possible
explanation for the problem these theories have with describ-
ing the long-time behavior at smallc.

The main purpose of this article is to identify the rel-
evant slow modes in frustrated spin systems and to describe
the impact of the coupling of these modes to a specific spin
variable. It is demonstrated that the existence of slowly re-
laxing spin domains of arbitrary size suggests a natural basis
of slow modes in which quantitatively accurate but simple
approximation schemes are easily formulated for many quan-
tities of interest in the study of slow heterogeneous relax-
ation.

II. THE EAST MODEL

The East model5 is a linear chain ofN spins, which are
numbered from 0 toN−1, with each spin allowed to assume
one of two values at any given time, here taken to be up or
down. Occupation numbersni are defined such thatni =1
when spini is up and 0 if it is down. The static properties of
this model follow from the Hamiltonian

H = mo
i=0

N−1

ni . s1d

Using the canonical distributionr,exps−bHd, the average
occupation per site if the system is at equilibrium at an in-
verse temperatureb is found to be

c = 1/s1 + ebmd. s2d

As bm has little physical significance in the current context,
the densityc will be used as a parameter. Ifn denotes a spin

statesi.e., a configuration of theN spinsd, the canonical equi-
librium distribution can be written as

rsnd = p
i=0

N−1

fcni + s1 − cds1 − nidg, s3d

where Eqs.s1d and s2d were used, as well as the fact thatni

is either 0 or 1. Note that each spini has a probabilityc to be
up sni =1d and 1−c to be downsni =0d.

For the dynamics, consider the conditional probability
density Utsn ,n8d to be in staten at time t given that the
system was in staten8 at time 0, which satisfies9,37

U̇tsn,n8d = o
ñ

fWsn,ñdUtsñ,n8d − Wsñ,ndUtsn,n8dg

; o
ñ

Lsñ,ndUtsñ,n8d, s4d

with U0sn ,n8d=dnn8. Here,Wsn ,n8ddt is the probability to
make a transition fromn8 to n in a time dt. By definition,
Wsn ,nd=0. Defining

Asn,td = o
n8

Asn8dUtsn8,nd s5d

from Eq. s4d it follows that Ȧsn ,td=on8Lsn ,n8dAsn8 ,td or

Ȧstd = LAstd, s6d

where the Liouville operatorL is a linear operator on the
2N-dimensional Hilbert space of functions ofn. The formal
solution of Eq.s6d is Astd=eLtAs0d.

For the East model,Wsn ,n8d can be written as a sum
over possible moves, i.e., spin flips of individual sitesi,
where a flip of spinni is possible only ifni+1=1 susing the
boundary condition thatnN=1d, as the expression forW
bears out:9

Wsn,n8d = o
i=0

N−1

fcdni1
dni80 + s1 − cddni0

dni81gni+1p
jÞi

dnjnj8
.

Correspondingly, the Liouville operator can be written as

Lsn,n8d = o
i=0

N−1

fs1 − cddni1
sdni80 − dni8ni

d

+ cdni0
sdni81 − dni8ni

dgni+1p
jÞi

dnjnj8
. s7d

The equilibrium distribution in Eq.s3d will serve as a
weight for the inner product on the Hilbert space, i.e., the
inner product ofAsnd and Bsnd is kAuBl=onrsndAsndBsnd
;kABl. Only real quantities will be used in this paper, so
there is no need to define a complex inner productsalthough
this is straightforwardd. The time correlation function ofA
and B can now be written as kAstd uBl. When
Wsn ,n8drsn8d=Wsn8 ,ndrsnd, i.e., when detailed balance
holds, as it does in this model,L is Hermitian with respect to
the inner product. In contrast to stochastic systems, in deter-
ministic systems the Liouville operator is anti-Hermitian. It
should be noted that the condition of detailed balance also
guarantees that the limiting stationary distribution of the
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Markovian dynamics is the equilibrium distribution ins3d,
provided the underlying Markov process is ergodic.37

As remarked by Pittset al.,8 different sites are not only
statically independentfcf. Eq. s1dg, but alsodynamically. To
see this, consider the normalized single-site fluctuation

n̂istd =
nistd − c
Îcs1 − cd

, s8d

which satisfieskn̂i
2stdl=1 andkn̂istdl=0. Note that

Ln̂i = − ni+1n̂i s9d

=− cn̂i + Îcs1 − cdn̂in̂i+1, s10d

using Eqs.s7d and s8d. Thus, the time derivative ofn̂i de-
pends on the product ofn̂i and n̂i+1. The derivative of that
product will in turn depend onn̂i+2, and so on. Thus,n̂i8std
=eLtn̂i8 involves onlyn̂i with i ù i8. From the static indepen-
dence of any sitei and any other sitei9 with i9, i8ø i, it
follows thatkn̂i9n̂i8stdl=kn̂i9lkn̂i8stdl=0. BecauseL is Hermit-
ian, alsokn̂i9stdn̂i8l=0. So all time correlation functions be-
tween different sitesi8Þ i9 are zero.

Given the dynamical independence of different sites, we
are interested in the nontrivial time correlation function

Cstd = kn̂istdn̂is0dl. s11d

In the limit N→` with i fixed, this is independent ofi due to
translation invariance. This single-spin time correlation func-
tion in the thermodynamic limit is the main quantity of in-
terest.

III. PHYSICS OF THE SLOW DYNAMICS

In a mode-coupling framework, dynamical equations are
derived for the time correlation functions of slow modes in
the system, which involves a memory kernel that is again
expressed in terms of the correlation functions.8,38–40To es-
tablish notation, letAk be the slow modes of the system
determined from physical arguments, withk an index run-
ning over the slow modes. It will be assumed thatkAkl=0 sas
could be achieved by subtracting the averaged, and thatAk

are orthonormal, i.e.,kAkuAql=dkq sas could be achieved by a
Gramm–Schmidt procedured. For brevity, theAk are taken
together in a vectorA. In the projection operator formalism,
the component alongA of any other physical quantityB is
found using the projection operatorPB=kBuAl ·A
=okkBuAklAk, where · denotes a vector product, i.e., a sum
overk, as indicated. Using a well-known operator identity in
Eq. s6d, one can derive that

Ȧstd = ME ·Astd +E
0

t

MDst − td ·Astddt + wstd, s12d

wherewstd=es1−PdLts1−PdLA and

ME = kAuLuAl, s13d

MDstd = kwstduwl. s14d

Note thatME andMDstd are matrices whose dimensions are
equal to the number of slow modes and thatME contains

only static information, while the memory kernelMDstd in-
volves the time correlation of the fluctuating forcewstd. Tak-
ing the inner product withA, Eq. s12d yields an equation for
the correlation functionGstd;kAstd uAl:

Ġstd = ME ·Gstd +E
0

t

MDst − td ·Gstddt. s15d

To solve this equation, a Laplace transform will be used,
defined as

G̃szd =E
0

`

e−ztGstddt. s16d

Here and in the following, we adopt the convention that
quantities with a tildes,d are z dependent. The solution in
Laplace space of Eq.s15d is

G̃ = sz1 − ME − M̃Dd−1, s17d

whereM̃D=e0
`e−ztMDstddt.

If A contained all the slow behavior, thenMDstd would
be a quickly decaying function that could be replaced by a
delta function in time and integrated over in Eq.s15d.38,39

Unfortunately, this is typically not the case because the pro-
jection operators1−Pd only removes part of the dependence
on A. For instance in a fluid, the long-wavelength modes of
density, momentum, and energy are slow because they cor-
respond to densities of conserved quantities, but only at low
densities is it enough to consider only these modes as slow.
Extending the setA by multilinear modes31,41 can help and
can be used to setup self-consistent equations which are ex-
act in the thermodynamic limit provided there is a finite dy-
namical correlation length.31–34

As is known from the extensive work of Götze and
co-workers16,20–29 and Leutheusser30 in deterministic sys-
tems, such self-consistent equations can give rise to a glass
transition.

If, on the other hand,A is a complete set, then 1−P=0
and consequentlywstd=0 and MDstd=0. In this case, the
above formalism corresponds to writing Eq.s6d in a particu-
lar basis. This formulation is often applied to the East
model.8,9,14When working with a complete basis set, the set
still has to be truncated at some level in practice. This intro-
duces truncation errors, or, viewed alternatively, a nonzero
MDstd. To get beyond the truncation problem, one makes an
ansatz for the memory kernel in terms of the time correlation
function of interestfhere Cstdg, yielding a self-consistent
equation. However, in stochastic systems, a glass transition
will not be found if such an ansatz is used for the memory
kernel, due to the Hermitian nature ofL.9,14Rather, an ansatz
needs to be used for the so-called “irreducible” memory
kernel.36,42 Then, a glass transition can be found for finitec
in the East model.8,9 However, simulations make it clear that
there is no transition to a nonergodic phase at a nonzero
value ofc. Somewhat better schemes to improve the ansatz
have been developed since,14 but generally, they lead either
to a transition or to a time correlation function that decays
too quickly.
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Essential for the success of mode-coupling theories for
fluids at lower densities is the finiteness of the dynamical
correlation length, which gives a cutoff length and certain
exact factorization properties in the thermodynamic
limit.31,32 However, for the East model, no such length scale
exists, as is seen when one contrasts the result of the scaling
of the decay time18,19 versus the diagrammatic approach of
Pitts and Andersen.9 When diagrams are truncated at a cer-
tain level, corresponding to taking into account only spins
within a certain distancel, the memory kernel becomes a
polynomial in c of which the highest power iscl, which
means the typical time can scale at the slowest asc−l. How-
ever, for c→0, the time scale diverges faster than any in-
verse power ofc.18,19 So clearly the spins at all positions,
arbitrarily far away, need to be taken into account.

A second way to see that the dynamic correlation length
is unbounded is to note that while the static correlation
length is zero, dynamically, the decay of the time correlation
function Cstd is influenced by other spins. For example, if
there is a large domain of down spins to the east of a given
spin, that particular spin requires a long time to flip since all
down spins in the domain must flip at least once. Hence, the
decay is correlated with the existence of this domain, and the
dynamic correlation length is therefore at least of the order of
the size of this domain. But domains of all sizes exist and
larger-sized domains will contribute to the behavior of the
time correlation functionCstd at longer times. Even if one is
only interested in the bulk of the behavior of the time corre-
lation functionCstd, for which the relevant domains are of
typical size 1/c, this size diverges asc→0. Therefore, it is
no surprise that fixed spatial truncations do not work below a
certain value ofc and that mode-coupling theories using such
truncations have problems in describing the long-time behav-
ior of the time correlation functionCstd. For a different for-
mulation of the importance of domains, see Garrahan and
Chandler11,12 and Wu and Cao.14

Thus, physically, the origin of the slowness of the dy-
namics seems to be related to the absence of a finite dynami-
cal correlation length and the existence of arbitrarily large
domains of down spins.

IV. THE DOMAIN BASIS

A. Single domains

Consider the leftmost spinn0 in a semi-infinite chain of
spins. East of this leftmost spinsi.e., at sitesi .0d, a domain
of typical size 1/c filled with down spins exists. In Sec. III it
was argued that the presence of these domains is essential to
the dynamics, so they should somehow be included. This is
achieved by defining thessingled domain basis, which is
composed of the orthonormal basis vectors

Q̂0 =
n0 − c

Z0
, s18d

Q̂1skd =
sn0 − cdD1skdsnk+1 − cd

Z1skd
, s19d

where

Diskd = p
j=i

i+k−1

s1 − njd. s20d

Note that each factors1−njd only yields a contribution when
nj =0, i.e., when spinj is down. Thus, the consecutive se-
quence ofk factors ofs1−njd in Diskd represents a continu-
ous domain ofk down spins starting at sitei. Furthermore, in
Eqs. s18d and s19d, the normalization constant are chosen

such thatkQ̂0
2l=kfQ̂1skdg2l=1, which means, using Eq.s3d,

that

Z0 = Îcs1 − cd, s21d

Z1skd = cs1 − cd1+k/2. s22d

The factorsnj −c in Eqs. s18d and s19d make thehQ̂0,Q̂1j
into an orthogonal set, since each such factor is zero on
average unless it is matchedsmultipliedd by a factor also

involving nj. For example whenkÞk8 in kQ̂1skd uQ̂1sk8dl
there is an unmatched factor, eithernk+1−c or nk8+1−c, so it
is zero.

Taking the collectionhQ̂0,Q̂1j for A in the projection
formalism of Sec. III, the matrixME in Eq. s13d which de-
termines the dynamics becomes

ME =FkQ̂0uLuQ̂0l kQ̂0uLuQ̂1l

kQ̂1uLuQ̂0l kQ̂1uLuQ̂1l
G , s23d

whereQ̂1 without a value ofk denotes the column vectorsin
the ketd or row vectorsin the brad composed of allQ̂1skd.
From Eqs.s7d and s9d it follows that

LQ̂0 =
− sn0 − cdn1

Z0
, s24ad

LQ̂1s0d =
− s1 − cdsn0 − cdn1 − sn0 − cdsn1 − cdn2

Z1s0d
, s24bd

LQ̂1sk ù 1d =
1

Z1skd
fs1 − cdsn0 − cdD1sk − 1dsnk − cdnk+1

− sn0 − cdD1skdsnk+1 − cdnk+2g. s24cd

We remark that a convenient diagrammatic approachsomit-
ted here for brevityd to these expressions and the calculation
of the corresponding matrix elements ofL can be found in a
preprint version of the current paper.43

A few words are in order on how to obtain the expres-
sion of LX given that ofX. The Liouville operatorL acts
much like a differential operator and can be shown to follow
the product ruleLsABd=AsLBd+sLAdB, providedA and B
do not involve the same sitenj. Thus,L acting on expres-
sions like those in Eqs.s18d and s19d yields a sum of terms
whereL acts on each factor individually. Each factor is ei-
ther snj −cd, nj, or s1−njd, and

Lsnj − cd = Lnj = − Ls1 − njd = − snj − cdnj+1. s25d

Thus, L acting on a factor involvingnj introduces a new
factor nj+1. If the expression already had a factor involving
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nj+1, one needs to multiply the new one with the original one,
and this gives the three possibilitiesnj+1snj+1−cd=s1
−cdnj+1, nj+1nj+1=nj+1, andnj+1s1−nj+1d=0. As the last one
shows,L acting on a factor involvingnj yields zero if a
factor s1−nj+1d is present. The reason why there are so few
terms in Eq.s24cd is that althoughL could in principle act on

all sites j in Q̂1skd, most have a factors1−nj+1d next to them
and yield zero.

The matrix elementskQ̂0uLuQ̂0l, kQ̂0uLuQ̂1skdl, and

kQ̂1sk8duLuQ̂1skdl are found by taking the inner product of the
expressions in Eqs.s24d with those ofQ0 andQ1sk8d in Eqs.
s18d and s19d. Because the factorssnj −cd need to be
matched, the only nonzero contributions turn out to be for
k8=k−1, k, andk+1, and

kQ̂0uLuQ̂0l = − c, s26ad

kQ̂1s0duLuQ̂0l = − Îcs1 − cd, s26bd

kQ̂1s0duLuQ̂1s0dl = − 1, s26cd

kQ̂1skduLuQ̂1skdl = − cs2 − cd if k . 0, s26dd

kQ̂1sk + 1duLuQ̂1skdl = = cÎ1 − c. s26ed

Using Eq.s23d, ME becomes the infinite tridiagonal matrix

ME = 3
− c − Îcs1 − cd

− Îcs1 − cd − 1 cÎ1 − c

cÎ1 − c − cs2 − cd �

� �

4 , s27d

where the diagonal dots denote repetition of the last men-
tioned expression on that diagonal.

At this stage,MDstd in Eq. s15d andM̃D in Eq. s17d will
be set to zero. The reasons for this are twofold. First, it
allows an explicit solution for spin-autocorrelation functions
to be obtained that is in good quantitative agreement with
simulations if the density of up spinsc is not too low. Sec-

ond, we will later complete the basis such thatM̃D is in fact
strictly zero. Equations17d yields in this approximation

G̃ < G̃s1d ; sz1 − MEd−1. s28d

Here, the superscripts1d indicates that the result is only a
first approximation. Below we will make this into a system-
atic approximation scheme in which further, more accurate
approximations can be obtained.

According to Eq.s18d, the Laplace transform of the cor-
relationCstd in Eq. s11d is the top-left element of the matrix

G̃,

C̃ =E
0

`

dt e−ztCstd = G̃11. s29d

To perform the matrix inversion in Eq.s28d, one uses the
fact that the inverse of a tridiagonal matrix can be performed

exactly. In particular, the top-left element of the inverse of a
symmetric tridiagonal matrix can be written as a continued
fraction:

3
a1 b1

b1 a2 b2

b2 a3 �

� �

4
11

−1

=
1

a1 −
b1

2

a2 −
b2

2

a3 − …

. s30d

Combining Eqs.s27d–s30d, one finds

C̃s1d = 3
z+ c Îcs1 − cd

Îcs1 − cd z+ 1 − cÎ1 − c

− cÎ1 − c z+ cs2 − cd �

� �

4
11

−1

=
1

z+ c −
cs1 − cd

z+ 1 −
c2s1 − cd

z+ cs2 − cd −
c2s1 − cd

z+ cs2 − cd − …

.

s31d

The repeating part of this expression is

g̃s1d =
c2s1 − cd

z+ cs2 − cd −
c2s1 − cd

z+ cs2 − cd − …

. s32d

This g̃s1d clearly satisfies

g̃s1d =
c2s1 − cd

z+ cs2 − cd − g̃s1d , s33d

which is solved by

g̃s1d =
1

2
fz+ cs2 − cd − Î4cz+ sz− c2d2g. s34d

fNote that the solution of Eq.s33d with a plus sign in front of
the square root in Eq.s34d does not go as 1/z for largez, and
is therefore not in agreement with Eq.s32dg. Inserting this
result in Eq.s31d, one obtains the explicit form

C̃s1d =
1

z+ c −
2cs1 − cd

z+ 2 − s2 − cdc + Î4cz+ sz− c2d2

. s35d

The explicit correlation function in Eq.s35d can be
Laplace inverted numerically using Stehfest’s algorithm44,45

sfor example, inMATHEMATICA
46d. For various values ofc,

the results are shown in Fig. 1 and compared with data from
simulations on the East model. Despite the simple form of

C̃s1d in Eq. s35d, there is excellent agreement between this
theoretical result and the data for 0.6,cø1, reasonable
qualitative agreement up toc<0.5, while the predicted de-
cay is clearly too fast forc,0.5.
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B. Inclusion of neighboring domains: A complete
basis

There is a need to extend the single-domain basis be-
cause it does not properly capture the long-time behavior of
Cstd for c less than 0.5, as seen from Fig. 1. The lack of
quantitative agreement between theory and simulation at
long times implies essentially that there is an important slow
behavior in the memory functionMDstd given in Eq.s14d that
cannot be neglected.

This situation is reminiscent of that in fluids. There, one
starts out describing time correlation functions in terms of
the linear dependence on the hydrodynamic fields of mass,
momentum, and energy density, i.e., one takes these to com-
prise the setA of Sec. III.38,39 But at lower temperatures or
higher densities this does not suffice becauseMDstd turns out
to no longer be a fast decaying function. To fix this situation,
i.e., to represent the missed slow behavior inMDstd, one
needs to augment the linear basis by vectors orthogonal to it.
For this, one can take products ofA swith proper subtractions
to assure orthogonalityd; these additional basis vectors are
called multilinear modes.31,41 The coupling of the linear
modes to the multilinear ones “renormalizes” the bare values

of MD found using onlyA to MD+S̃szd, whereS̃ is a self-
energy. The z dependence of this self-energy is such that it
can describe slowly decaying behavior such as long-time
tails. Since the multilinear modes can be interpreted as prod-
ucts of linear hydrodynamics modes, this procedure amounts
to a nonlinear coupling of hydrodynamic modes and is hence
called mode-coupling theory.

Similarly, if for the East model, the matrixME is taken to
be represented at the linear level by Eq.s27d, where the
linear basissusing analogous nomenclature as aboved com-

posing the set of slow variables is taken to beA=hQ̂0,Q̂1j,
then the memory function corresponds to an infinite square
matrix represented at the linear–linear level that effectively

renormalizes the matrix elements ofME to ME+M̃D, accord-

ing to Eq.s17d. Hence,M̃D takes the role of the self-energy
here, and must describe contributions to the decay of the

spin–spin correlation function due to the projection of the
dynamical evolution onto a space orthogonal to the linear
basis setA. In other words, the single-domain basis does not
span the ergodic component and fails to capture all the slow

dynamics of the spin fluctuation variableQ̂0. To represent the
missed slow evolution, the single-domain basis set must be
expanded to include additional slow modes and their cou-
pling to the linear modes must be computed.

To deduce the appropriate extension of the basis, it is
helpful to realize, as Fig. 1 shows, that the decay ofCstd that

is predicted by the extended linear basis,hQ̂0,Q̂1j, is too
rapid. A reasonable explanation of this particular deviation is
that in the single-domain basis, the final spinnk+1 in Eq. s19d
decays regardless of the spin configuration to its right. As a
result, any slowing down effect of a persistent down-spin
domain to the right ofnk+1 is missed. It therefore seems
natural to try to fix the too rapid decay of theCstd by aug-
menting the basis with a second down-spin domain,

Q̂2sl1,l2d =
sn0 − cdD1sl1dnl1+1Dl1+2sl2dsnl1+l2+2 − cd

Z2sl1,l2d
, s36d

which carries an index doubletsl1, l2d of which each member
l j can take integer values from zero to infinity, and
Z2sl1, l2d=c3/2s1−cd1+fl1+l2g/2. These are orthogonal toQ0, as

well as to Q1, since in kQ̂0uQ̂2sl1, l2dl, the trailing factor

snl1+l2+2−cd of Q̂2 is not matched, yielding zero, and in

kQ̂1skd uQ̂2sl1, l2dl, it is impossible to match it with the trail-

ing factorsnl1+l2+2−cd of Q̂1sk= l1+ l2+1d without having the

factor nl1+1 from Q̂2 multiplying a factor 1−nl1+1 from Q̂1,
which yields zero. Along similar lines, it is easy to establish

that theQ̂2sl1, l2d are also orthonormal among themselves.
There is no obvious reason to stop this procedure at the

two-domain, or “bilinear,” level and, in fact, the basis can be
extended to a complete set in the relevant ergodic component
in a straightforward fashion. The elements of this complete
basis are written as a sequence ofa down-spin domains of
different sizeskj, separated by single up spins:

Q̂ask1,…,kad =
n0 − c

Zask1,…,kad
D1sk1dnk1+1Dk1+2sk2d

3 nk1+k2+2¯ Dk1+¯+ka−1+askad

3 snk1+¯+ka+a − cd. s37d

Here,a=0¯`, kj =0¯`s j =1¯ad, and

Zask1,…,kad =Hc1/2s1 − cd1/2 if a = 0

cs1+ad/2s1 − cd1+o
j=1

a
kj/2 otherwise.

J
s38d

It is easy to see that theQ̂a are all independent: the inner
product of two of them is zero unless they have the same
number of factors, so that both trailing factorssnj −cd are
matched. But then the interiors of the expressions also have
to match, otherwise factorsnj8 and 1−nj8 are multiplied and
this gives zero. The only nonzero inner product of a

Q̂ask1,… ,kad is therefore with itself. Due to our choice of

FIG. 1. Results for the single-spin time correlation functionCstd from the

single-domain basishQ̂0,Q̂1j fby numerical Laplace inversion of Eq.s35d in
Sec. IV A usingMATHEMATICA g, compared to simulation dataskindly pro-
vided by Professor H. C. Andersend.
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normalizationkfQ̂ask1,… ,kadg2l=1. Since eachQ̂a is ortho-
normal to all others, each contributes a unique direction in
the Hilbert space to the basis which could not be formed

from the others: TheQ̂a are independent.
To also establish completeness, we will now count the

number of element of the above basis in the finite system of

N spins. In that system, there exists onlyQ̂a for which a
+1+o j=1

a kj øN swhich also limitsa,Nd. Elementary com-

binatorics show that the number of differentQ̂a for a givena

and N is sN−1

a d. The total number ofQ̂a is thus oa
N−1sN−1

a d
=2N−1. Thus the above set of 2N−1 basis vectors covers only
half of the full Hilbert space, which has 2N dimensions. But
it is easy to see which basis vectors are missing and why they
are not important. The expression in Eq.s37d always starts
with n0−c, even though the first spin can have two values.
Independent vectors can be found by taking a different ex-
pression for the first spin. In fact, one can take 1, i.e., one
could consider variants of the basis vectors in Eq.s37d in

which the factor ofsn0−cd is not present. We call theseQ̌b,

of which there are as many as there areQ̂a. These new vec-

tors are orthogonal to each other as well as to theQ̂a because

in kQ̂aQ̌bl the initial n0−c of Q̂a is not matched byQ̌b and

kn0−cl=0. Thus, theQ̌b are the missing basis vectors. How-

ever, they are completely unimportant here because theQ̌b

are also orthogonal toLQ̂a, as is seen from the fact thatLQ̂a

will always have the factorn0−cfLsn0−cd=−sn0−cdn1g so

that the inner product withQ̌b is zerosfor this it is important
not to have periodic boundary conditionsd.

So the basis setQ̂a is not a complete basis for all pos-
sible spin configurations, but itis a complete orthonormal

basis for all spin configurations to which theQ̂a couple.
These considerations also imply that the East model is

not ergodic: the state space contains at least two ergodic
components, which are such that a configuration in one of
them can never make a transition to any configuration in the

other. Noting that the space spanned byQ̌b contains all quan-
tities insensitive to the value ofn0, one realizes that it con-
stitutes an East model with an effective length ofN−1. The
argument above then shows that the state space of this
smaller East model can also be split into at least two ergodic
components. Applying this argument recursively reveals that
there areN+1 ergodic components. Thepth ergodic compo-
nent consists of functions not sensitive to the values of spins
n0 through somenp−1, with 0øpøN, and has 2N−p−1 dimen-
sions if p,N and one dimension ifp=N. The collection of
these ergodic components has 1+op=0

N−12N−p−1=2N dimen-
sions, and thus indeed spans the full Hilbert space of the spin
chain of lengthN.

Since we are interested in the time autocorrelation func-
tion of spin n0, the relevant ergodic component is the one

spanned byQ̂a, and we conclude that theQ̂a are the only
basis vectors needed. Having established the “relevant com-
pleteness,” one can take the limitN→` again, so we need
not worry about the boundary condition imposed onnN.

The extension of the basis set to include an arbitrary

number of domains is useful in developing a systematic ap-

proach to generate successive improvements forC̃ for lower

c. Since the basisA=hQ̂aj spans the ergodic component of

Q̂0, it follows that wstd=es1−PdLts1−PdLQ̂0=0 and the
memory functionMDstd vanishes. Hence, from Eq.s17d,
G̃szd=sz1−Md−1, where the full matrixM=ME in this com-
plete basis can be written as

M = 3
M00 M01

M01
† M11 M12

M12
† M22 �

� �

4 , s39d

whereMab=kQ̂auLuQ̂bl and it was used that this is zero un-
less ua−bu,2, as can easily be shownsalso, the diagonal
dots do not denote repetition now: allMab can be differentd.
Generalizing Eq.s30d by repeatedly applying the matrix
equality ssee, e.g., Ref. 47d

Fa c

d b
G−1

= F fa − cd
b g−1 − fa − cd

b g−1cb−1

− fb − dc
a g−1da−1 fb − dc

a g−1 G ,

s40d

one finds

C̃szd =3
z1 − M00 − M01

− M01 z1 − M11 − M12

− M12
† z1 − M22 �

� �

4
11

−1

s41d

=
1

z1 − M00 −
M01M01

†

z1 − M11 −
M12M12

†

z1 − M22 − …

s42d

=
1

z1 − M00 −
M01M01

†

z1 − M11 − S̃11szd

, s43d

where the self-energy matrix at the linear–linear level is de-
fined to be

S̃11szd =
M12M12

†

z1 − M22 −
M23M32

†

z1 − M33 − …

s44d

=
M12M12

†

z1 − M22 − S̃22szd
. s45d

For convenience a nonstandardsbut uniqued notation for a
matrix fraction has been introduced here, such that ifA ,B,
andC are matrices then
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AB

C
; A ·C−1 ·B. s46d

This notation saves a lot of space and avoids many nested
parentheses and inverses that would be required in more
standard notation. We remark that Eq.s41d is similar to the
matrix formalism of Wu and Cao,14 while Eq. s42d has simi-
larities to the continued fraction formalisms of Mori48,49 and
Schneider.50 The structure of Eq.s41d is that of a mode-
coupling theory in which the role of mode order is played by
the number of domains. The effect of the higher-order modes
is to renormalize the “transport” coefficients approximated
by ME at the linear level.

We will make subsequent approximations by truncating
Eq. s42d at ever deeper levels. In contrast, Wu and Cao—in
addition to splitting the infinite matrix up differently—pose a
closure relation between memory functions at ever deeper
levels.14 For the first few levels at least, these involve explic-
itly solvable quadratic equationsf“LT s2d” and “LTs3d” g or a
cubic equationf“LT s4d,” which works very well up toc
=0.2g. Deeper closures, not contained in Ref. 14, may not be
explicitly solvable.

By truncating Eq.s42d at ever deeper levels, i.e., setting

Ma,a+1=0, corresponding toS̃aaszd=0, for increasinga one
gets expressions which work well for ever lower values ofc,

denoted asC̃sadszd. For example, truncating at the zeroth
level gives

C̃s0dszd =
1

z− M00
=

1

z+ c
, s47d

while truncating at the first, linear level yields the result in
Eq. s35d. Following this procedure further, the first correction
to the linear basis results involves evaluating the self-energy
in the approximation where one ignores the effects of three
domains and higher, i.e.fcf. Eq. s45dg,

S̃11szd <
M12M12

†

z1 − M22
, s48d

corresponding to a bilinear type of mode-coupling theory.
Due to the simplicity of the coupling with respect to mode
order and for different domain sizes, an explicit expression
for this approximate self-energy can be obtained. In the Ap-

pendix,S̃11szd is explicitly evaluated to be

S̃11 = 3
h̃1 − Î1 − ch̃1

− Î1 − ch̃1 s1 − cdh̃1 + h̃2 − Î1 − ch̃2

− Î1 − ch̃2 s2 − cdh̃2 �

� �

4 ,

s49d

where the functionsh̃ j are given by Eqs.sA18d and sA22d.
Using this expression for the self-energy, the linear–linear

matrix G̃szd of Sec. IV A fwhich is in fact the top-left block
of the inverse matrix on the right-hand side of Eq.s41d in-
corporating the zeroth and first levelg is renormalized to

G̃R
s2d = Fz1 − ME − S0 0

0 S̃11
DG−1

s50d

=3
z+ c Îcs1 − cd

Îcs1 − cd z+ 1 − h̃1 − Î1 − csc − h̃1d

− Î1 − csc − h̃1d z+ s2 − cdsc − h̃2d + s1 − cdsh̃2 − h̃1d − Î1 − csc − h̃2d

− Î1 − csc − h̃2d z+ s2 − cdsc − h̃2d �

� �

4
−1

, s51d

from which the single-spin time correlation functionC̃s2d

=fG̃R
s2dg11 is computed with the continued fraction expression

in Eq. s30d to be

C̃s2d =
1

z+ c −
cs1 − cd
asc,zd

, s52d

whereasc,zd is

asc,zd = z+ 1 − h̃1

−
s1 − cdsc − h̃1d2

z+ s2 − cdsc − h̃2d + s1 − cdsh̃2 − h̃1d − g̃s2d .

s53d

In Eq. s53d, the repetitive partg̃s2d satisfies

g̃s2d =
s1 − cdsc − h̃2d2

z+ s2 − cdsc − h̃2d − g̃s2d . s54d

This is solved by
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g̃s2d = 1
2hz+ s2 − cdsc − h̃2d

− Î4sc − h̃2dz+ fz− csc − h̃2dg2j. s55d

Note the resemblance withg̃s1d in Eq. s34d.
As before, the explicit result in Eq.s52d is inverted nu-

merically using Stehfest’s algorithm.44–46 For various values
of c, the results are shown in Fig. 2 and compared with data
from simulations of the East model. Notice that there is a
huge improvement over the results obtained using only the

single-domain basishQ̂0,Q̂1j in Fig. 1. There is now excel-
lent agreement between the theory and the data forcù0.4,
and reasonable agreement up toc<0.3. Furthermore, while
the theoretical decay is still too fast forc,0.3, the small-
time behavior is captured beautifully. In particular, the shoul-
der that appears in the simulations for lowc is reproduced by
the extended theory as well, something the single-domain
basis could not do.

In the low-temperature regionssmall cd, the long-time
behavior of the spin-autocorrelation function predicted by
the two-domain basis set is well described by a stretched
exponential Cstd,expf−st /tdbg with a temperature-
independent stretching exponent ofb<0.6. Although it is
encouraging that the stretched exponential time profile is in-
deed predicted by the theory, simulations indicate that in fact
the stretching exponentb should have a weak temperature
dependence,51 with b decreasing in value as the temperature
decreases. The origin of this discrepancy between our theory
and numerical simulation is not clear and is under investiga-
tion.

In principle, the effect of three down-spin domainsstri-
linear modesd can be included in the same spirit, i.e., by

evaluating the self-energy at the two-domain levelS̃22szd us-
ing matrix methods similar to those applied to obtain Eq.
s49d. Unfortunately, the algebra becomes even more cumber-
some and explicit evaluation of the self-energy matrices at
higher and higher order becomes effectively impossible. Al-
ternatively, one can resort to numerical approaches in which
the maximum domain sizekm is fixed and all matrix inver-
sions are carried out numerically. By monitoring conver-

gence to a set level of precision, such a procedure provides a
systematic and numerically tractable method of predicting
the decay of the spin-autocorrelation function for arbitrary
values ofc.

V. RELAXATION BEHAVIOR

One of the main advantages of the matrix method out-
lined here is that it is straightforward to obtain analytic pre-
dictions for rather detailed features of the dynamics. For ex-
ample, one of the commonly calculated quantities from
simulation data is the relaxation timet. For systems exhib-
iting such nontrivial relaxation behavior as stretched expo-
nential, the definition of the relaxation time is a matter of
choice. Perhaps the most sensible way to view the relaxation
time for such systems is to consider it as the weighted aver-
age of a distribution of relaxation times. For example, based
on the spectral decomposition of the Liouville operator, one
can formally write the spin-autocorrelation function as a
weighted sum of exponentials with relaxation timestn, i.e.,
Cstd=Sncn exps−t /tnd. Since the Liouville operator is Her-
mitian and the spin variables are real, one is guaranteed that

the relaxation timestn and coefficientscn=kQ̂0ucnl2, where
ucnl are the rightsand leftd eigenvectors of the LiouvillianL,
are real and positive. Furthermore, sinceCst=0d=1=Sncn,
the coefficientscn are proper weights for the relaxation time
tn. However, sinceL is of infinite dimension, its spectrum
can bespartially or completelyd continuous, so the more gen-
eral expression is

Cstd =E rst8dexps− t/t8ddt8, s56d

where rst8dù0, rst8,0d=0, and erst8ddt8=1. One can
therefore define theaveragerelaxation time as

t =E rst8dt8dt8. s57d

Noting that the Laplace transformC̃szd of Eq. s56d is

C̃szd =E rst8d
z+ 1/t8

dt8, s58d

we see that

t =E rst8dt8dt8 = C̃sz= 0d. s59d

Note that in the case in which a single relaxation timet*

dominates all others, one observes thatt<t* since rst8d
<dst8−t*d.

Note also that in taking the pointz=0, the expression is
sensitive to long-time behavior. This in contrast to, e.g., the
average rateerst8ds1/t8ddt8 which by Eq. s56d is just
−sd/dtdCst=0d=c and contains no information on the long-
time behavior.

Given the analytical results for the Laplace transform of
the spin-autocorrelation function in the one-domainfEq.
s35dg and two-domain representationsfEq. s52dg of the slow
dynamics, explicit expressions fortscd can be obtained by
setting z=0 in the respective equations. For example, not

FIG. 2. Results for the single-spin time correlation functionCstd using the

extended basishQ̂0,Q̂1,Q̂2j in Eq. s52d of Sec. IV B snumerically Laplace
inverted usingMATHEMATICA d, compared to simulation data.
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including domains as in Eq.s47d givests0d=1/c, while in the
one-domain basis, Eqs.s35d and s59d lead to the simple re-
sult

ts1d =
1 − c + c2

c3 , s60d

in which the average relaxation time diverges asc−3 as the
concentrationc approaches zero. Furthermore, in the two-
domain representation, the average relaxation time is a com-
plicated function ofc. In the limit that c→0, we find that
ts2d,c−4. In Fig. 3, the theoretical predictions of the average
relaxation time in the one-domain and two-domain basis sets
are compared with numerically integrated simulation data.
Note that as is evident from Figs. 1 and 2, the two-domain
predictions significantly improve the one-domain results but
still underestimate the relaxation time of the system at small
values ofc.

From the relationship betweenc andbm in Eq. s2d, it is
clear that at low temperaturesc,exps−bmd. Since the loga-
rithm of the average relaxation time logt is proportional to
logs1/cd for ts0d ,ts1d, andts2d, a plot of logt vs bm yields a
straight line in the smallc slow temperatured limit. Thus we
can conclude that the zero-, one-, and two-domain basis sets
all yield a relaxation time that diverges according to the
Vogel–Fulcher law t,expf−const/sT−T0dg with a glass
transition temperature ofT0=0. Note that these results are in
contrast with the exact result for the equilibration timete of
a system quenched to a very low but nonzero temperatureT
wherete,expsconst/T2d.18,19 This finding is somewhat sur-
prising given that the equilibration time was calculated in the
asymptotic smallc regime using ideas of domain structure
rather similar to those presented here.

Given the relatively simple structure of the matrixG̃szd,
it is easy to numerically examine many detailed features of
the relaxation given a finite-domain basis set specified by
setting a maximum domain sizekm. For example, one can
easily examine how the spectrum ofL depends onc. At the
same time, the actual distribution of thecn can be computed
numerically to see how many relaxation modes are relevant

as a function ofc. From this information, one can try to
attempt to establish a link between the distribution of relax-
ation times as a function of temperature and the asymptotic
stretched exponential form, as suggested in Ref. 15. This
may be an instructive way to examine the failure of the two-
domain basis to correctly predict the temperature dependence
of the stretching exponentb. However, since analytical re-
sults are available for all quantities, it is desirable to obtain
analytical expressions for such features as thewidth or
spreads of the relaxation timest8 as a function ofc. The
spread int8 is defined by

s =ÎE rst8dst8 − td2dt8. s61d

Now one can use that C̃8s0d=limz→0 d/dzC̃szd=

−erst8dt82dt8 fcf. Eq. s59dg to write s=h−C̃8s0d
−fC̃s0dg2j1/2. Since we have obtained closed expressions for

C̃szd, analytic expressions can be obtained fors. For ex-
ample, using the one-domain basis set, we find that

ss1d =
Î1 − c

c3 , s62d

whereas the expression forss2d in the two-domain basis is a
complicated function ofc fnote:ss0d is actually zerog. From
these analytical expressions fors, one immediately sees that,
in fact,s diverges asc approaches zero in thesameway ast.
Hence a plot ofs /t remains finite for all values ofc. Fur-
thermore, noting that in the one-domain basis,

ss1d/ts1d =
Î1 − c

1 − c + c2 , s63d

it is evident that limc→0 ss1d /ts1d=1. Surprisingly, the same
conclusion holds in the two-domain basis, as is evident from
Fig. 4. Note that at large values ofc<1, s<0 indicating that
the relaxation is dominated by a single mode.

We note that higher-order derivatives ofC̃szd at z=0 can
similarly be used to investigate further characteristics of the
relaxation-time distribution such as the skewness and the

FIG. 3. Logarithmsbase 10d of average relaxation timet for various values
of c. The inset shows the same as a function of the logarithm ofc salso base
10d for the theoretical results, with slopes of −1,−3, and −4 showing their
scaling behavior.

FIG. 4. Ratios /t of the widths of the relaxation-time distribution to the
average relaxation timet as a function ofc in the one-domain and two-
domain bases.
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kurtosis. More generally, Eq.s56d shows Cstd to be the
Laplace transform of the distribution of relaxation rates. If
r =1/t are the relaxation rates, then their distribution is
Psrd=r−2rs1/rd and Eq.s56d can be written as

Cstd =E
0

`

Psrdexps− rtddr. s64d

In this sense,Cstd is the Laplace transform ofPsrd. Thus,
givenCstd, one might expect to be able to use the numerical
Laplace inverse of the Stehfest algorithm to obtainPsrd. Un-
fortunately it turns out that using Stehfest’s numerical
Laplace inverse method onCstd, which was itself obtained

from C̃szd by the same method, is unstable; it in fact yields
an incorrect result forPsrd, namely, a highly oscillating func-
tion, which is not non-negative and not normalized to one.
Since the distribution of relaxation rates was considered here
mainly as an illustration of the power of the theoretical ap-
proach presented in this paper, solving the numerical insta-
bility associated with applying the Stehfest algorithm twice
and determining the distribution of relaxation rates in detail,
is left for future work.

VI. HIGHER-ORDER CORRELATION FUNCTIONS

Given the glassy nature of the dynamics of the East
model, it is interesting to probe higher-order correlation
functions to examine issues of cooperativity in the dynamics
and non-Gaussian statistics. In particular, one can look at the
neighbor-pair spin correlation function

kn̂istdn̂i+1stdn̂is0dn̂i+1s0dl = kQ̂1sk;tdQ̂1sk;0dldk,0 = G22std,

s65d

and a related quantity

Dstd = G22std − kn̂istdn̂is0dlkn̂i+1stdn̂i+1s0dl s66d

that examines the non-Gaussian nature of the normalized
spin fluctuation variablen̂i. Given the simplicity of the ma-
trix method, it is relatively straightforward to obtain analytic
expressions for higher-order correlation functions such as
Eq. s65d. For example, from the definition of the neighbor-
pair spin variable, which corresponds to the linear basis-set

elementQ̂1s0d, it follows that the Laplace transformG̃22 of
the functionG22std is the 2–2 element of the infinite matrix

G̃, which, in the two-domain basis approximation, is given
by Eq.s50d. Using standard matrix inversion methods, the 2–

2 element ofG̃s2d is

G̃22
s2d =

1

asc,zd −
cs1 − cd

z+ c

, s67d

whereasc,zd is given in Eq.s53d. In Fig. 5, the functions
G22std andDstd are plotted versus time for various values of
c susing Stehfest’s algorithm for the inverse Laplace trans-
formd. Note that the agreement between the theoretical pre-
dictions and the simulation data is excellent for all times for
all but the smallest valuec=0.2.

The neighbor-pair autocorrelation function exhibits sev-
eral remarkable properties that are rather unlike those of the
spin-autocorrelation function. Note that in the short-time
limit tø1 the relaxation ofG22std is independentof the equi-
librium up-spin concentrationc. This result can be explained

by examining a short-time expansionslargezd of G̃22, from

which it is seen thatasc,zd,z+1 and henceG̃22,1/sz
+1d, corresponding to simple exponential relaxationG22std
,exps−td. Effectively this approximation corresponds to the

short-time expansionG̃22,1/fz−kQ̂1s0duLuQ̂1s0dlg. Even
more remarkable is the clear emergence of a plateau in the
neighbor-pair autocorrelation function asc decreases and the
system becomes “glassy,” yielding a two-step relaxation-
time profile similar to that observed for the dynamic struc-
ture factor at microscopic length scales in simple glass-
forming systems. In such systems, the onset of the plateau,
generally called theb regime, is relatively insensitive to tem-
perature and is often associated with the phenomenon of dy-
namic caging in dense fluid systems. In this regime, fluid
particles typically oscillate in the traps formed by their im-
mediate neighbors and little relaxation of the system occurs.
This behavior typically continues until a typical time scale,
known as thea regime, is reached in which particle cages
are temporarily broken. Thisa time scale is strongly tem-
perature dependent and scales with the overall relaxation
time of the system. Interestingly, similar behavior is ob-
served inG22

s2dstd of the East model: There is an initially rapid
decay swith time scalet,1d at which point a plateau ap-
pears. The plateau typically extends to times corresponding
to the average relaxation timet of the spin-autocorrelation
function. However, unlike simple liquid systems, theheight
of the plateau is strongly temperature dependent, occurring
roughly at value ofc. In the East model, one can interpret the
emergence of the plateau as arising from a kind of effective
dynamic caging of the pair spin variablenini+1 that occurs
when ni+1=1. When the right neighbor of a given spini is
up, the spinni can oscillate between values of 1 and 0 for
extended periods of time, corresponding to a kind of vibra-

FIG. 5. Higher-order correlation functions. Top: the non-Gaussian measure
Dstd defined in Eq.s66d. Bottom: the neighbor-pair autocorrelation function
G22std. In both graphs, the open circles and solid lines correspond totheo-
retical andsimulationvalues, respectively.
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tion in a cage. This behavior will persist until the spini +1
flips, which typically will occur at timest,t. Furthermore,
the probability of finding such a caged system scales with the
likelihood of finding an up spin in equilibrium,c.

The two-step relaxation ofG22std was also found nu-
merically by Wu and Cao14 swho refer to this quantity as
C2d. Wu and Cao showed that the relaxation can be described
with a stretched exponential behavior at long times. From the
numerical analysis of our theoretical expressions, we find
that the parameter-freetheoretical relaxation profile is also
well described by a stretched exponential with the same
stretching exponentialb<0.6 found in the analysis of the
spin-autocorrelation functionCstd.

As can be seen from Fig. 5, the spin fluctuationsn̂i do
not behave as Gaussian random variables at all time scales
and for all values ofc, unlike their counterpart, the Fourier
components of the mass density, in simple liquid systems. It
can also be observed that the decay of the spin fluctuations is
slower than that predicted for a system exhibiting Gaussian
statistics for all times at high values ofc. As c drops below
0.5, the decay becomesfaster than Gaussian at short times
but slower than Gaussian at long times. The fact thatc=0.5
is special can be seen from a short-time expansion ofDstd:

Dstd = kQ̂1s0dueLtuQ̂1s0dl − kQ̂0ueLtuQ̂0l2

= 1 + tkQ̂1s0duLuQ̂1s0dl +
t2

2
kQ̂1s0duL2uQ̂1s0dl

− F1 + tkQ̂0uL2uQ̂0l +
t2

2
kQ̂0uL2uQ̂0lG2

+ Ost3d.

Using the rules elaborated in Sec. IV A, all quantities appear-
ing above are easily evaluated to reveal the exact result:

Dstd = s2c − 1dtF1 − s2c + 1d
t

2
G + Ost3d, s68d

from which the sign change forc=0.5 is explicitly evident at
short times.

One can also note in Fig. 5 that the maximum positive
deviation from Gaussian behaviorsi.e., slower than Gauss-
iand occurs at a time which scales roughly with the average
relaxation timet.

VII. DISCUSSION

In this paper, the East model—a linear kinetically con-
strained spin model which is statically structureless—was
studied theoretically taking the domains of down spins as a
starting point. The constraints in the model lead to a very
slow spin relaxation for low up-spin densityc because of the
existence of these down-spin domains, of which each spin
has to flip at least once before a spin on the left of the
domain can relax. Such highly cooperative, hierarchical
events driving the relaxation mimic heterogeneous behavior
in glasses.

The way the down-spin domains were taken into account
was by using them in the construction of a basis which is
complete on the relevant ergodic component. In the complete
domain basis, the theory is formally exact, but the basis
needs to be truncated to get explicit results. In this trunca-

tion, one only limits how many simultaneous domains are
included without restricting the possible sizes of those do-
mains. When we restricted ourselves to a single-domain de-
scription, an explicit result for the single-spin time correla-
tion function CstdfCs1dg was obtained which gives a good
quantitative description forc larger than about 0.5. An ex-
tension including neighboring domains led to an explicit ex-
pressionfCs2dg which described the slow, glassy behavior
correctly down toc<0.3. A general procedure was outlined
to obtain further approximations.

The main advantages of our approach over others are
that sad it gives explicit analytical results without fitting pa-
rameters,sbd it requires neither an arbitrary closure for the
memory kernel nor the construction of an irreducible
memory kernel such as in mode-coupling theories, andscd
nonetheless, it describes lowc behavior equally well as these
mode-coupling theories. The explanation for this power is
that domains of all sizes are included.

While it is true that there is some arbitrariness to where
one truncates the domain basis, i.e., how many simultaneous
domains of arbitrary size one wishes to consider, if a certain
level of truncation does not suffice, one can in principle im-
prove the situation by going to the next level. Such a sys-
tematic improvement is not always possible in the kinds of
ansatz used in mode-coupling theories.

At a given level of truncation, the matrix approach out-
lined here allows analytical results for the spin-
autocorrelation function to be obtained. Armed with these
results, it is possible to assess the effect of truncation the
multidomain basis by evaluating approximate expressions
for the “self-energy” terms, as was done in Sec. IV. One can
then examine the time scale at which the higher domain cor-
rections become important and their magnitude for a given
value ofc. Such information is useful in examining dynami-
cal scaling relations.10,52

The matrix approach is also well-suited for examining
higher-order correlation functions, such as the neighbor-pair
autocorrelation function, that probe detailed aspects of the
dynamics, as was shown in Sec. VI.

Our theory does not require an ansatz for a closure rela-
tion between the memory kernel and the correlation function,
yet it does have thestructure of a mode-coupling theory.
First of all, the theory, derived using a projection operator
formalism, yields a basis set very similar to the multilinear
set in the theory of Oppenheim and co-workers. Second, suc-
cessive truncations of the set are like including only linear
modes, or also bilinear modes, or also trilinear ones, etc.,
again very similar to mode-coupling theories for fluids. Fi-
nally and perhaps most strikingly, without assuming a clo-
sure relation, a self-consistent equation emerges for part of
the result, i.e., forg̃s1d in Eq. s33d of Sec. IV A and forg̃s2d in
Eq. s54d of Sec. IV B. Thus, in a sense, the correct closure
relation follows unambiguously from the theory rather than
being assumed. Perhaps this is an indication why mode-
coupling theories can work, at least in some range ofc, if the
closure relation is well chosen. However, as the difference
between the closure forg̃s1d and g̃s2d shows, the required
closure depends on how lowc is. The closure can also be-
come “hierarchical,” in the sense thatg̃s2d depends onh̃2,
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which itself satisfies a self-consistent equation.
A natural question is how adaptable is the matrix ap-

proach outlined here for other conditions of spin facilitation,
such as the Frederickson–Andersen6,7 sFAd model, higher di-
mensions, and other types of lattices. The extension to the
FA model involves extending the one-domain basis set to
include domains onboth sides of the targeted spin and in-
volves slightly more complicated matrix algebra than that
presented here.53 For the FA model for which self-consistent
closure schemes in the context of mode-coupling theory ap-
pear to work quite well,54 quite good quantitative agreement
can be obtained with the simple single-domain basis set. Ex-
tensions to include multiple domains can be carried out nu-
merically for the FA model as well as other generic models.
In addition, higher-dimensional models can also be tackled
in a numerical fashion using finite basis-set representations,
provided the basis sets include domains that are sufficiently
large. Although finite matrix representations are always
bound to give the incorrect long-time asymptotic behavior
for systems exhibiting stretched-exponential profiles, the
short- and intermediate-time behavior can be reproduced
with great accuracy.

It is conceivable that the complete basis set presented in
Sec. IV B has a deeper structure that could be exploited for
the description forc→0. Also, the domain basis might be
used to describe the response of the East model to a sudden
“quench” to low c values. Work on these issues is in
progress.

Finally, our approach shows how important it is tofirst
identify the “slow modes” of a system, in this case the down-
spin domains,beforeembarking on a mode-coupling-like de-
scription of the long-time behavior of correlation functions.
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APPENDIX: SELF-ENERGY MATRIX IN THE
TWO-DOMAIN BASIS

From the expression for the self-energy matrix in the
two-domain approximation,

S̃11szd <
M12M12

†

z1 − M22
,

it is clear that we must evaluate matrices such asM12

=kQ̂1slduLuQ̂2sl1, l2dl. The double indices onQ̂2sl1, l2d tend to
make the algebra somewhat less transparent than in Sec.
IV A, and it turns out that the self-energy matrix can be

evaluated more easily by splitting up the setQ̂2 given in Eq.

s36d into two-domain variables for whichl2=0 and those for
which l2.0, by defining

R̂skd = Q̂2sk,0d =
sn0 − cdD1skdnk+1snk+2 − cd

Z2sk,0d
, sA1d

Ŝsl1,l2d = Q̂2sl1,l2 + ld

=
sn0 − cdD1sl1dnl1+1Dl1+2sl2 + 1dsnl1+l2+3 − cd,

Z2sl1,l2 + 1d
.

sA2d

The matrix M12 then takes on the formM12=fMQR,MQSg,
where

MQR= kQ̂1uLuR̂l, sA3d

MQS= kQ̂1uLuŜl, sA4d

andM22 is written in the block form

M22 = FMRR MRS

MRS
† MSS

G , sA5d

whereMRR,MRS, andMSSare

MRR= kR̂uLuR̂l, sA6d

MRS= kR̂uLuŜl, sA7d

MSS= kŜuLuŜl, sA8d

and where the notation thatR̂ or Ŝ without any argument

denotes the column or row vector composed of allR̂skd or

Ŝsk1,k2d, respectively.
The matrixMQS is in fact zero, so the matrix self-energy

S̃11 is

S̃11 = MQRfz1 − M22gRR
−1MQR

† . sA9d

Using the matrix equalitys40d, this expression can be rewrit-
ten as

S̃11 = MQRFz1 − MRR−
MRSMRS

†

z1 − MSS
G−1

MQR
†

=
MQRMQR

†

z1 − MRR−
MRSMRS

†

z1 − MSS

. sA10d

The explicit calculation of all the matrix elements ap-
pearing in Eq.sA10d proceeds as follows: We start withMQR

defined in Eq.sA3d. Combining the expressions ofLQ̂1skd in

Eqs. s24bd and s24cd with that of R̂sk8d=Q̂2sk8 ,0d in Eq.
sA1d yields

kQ̂1skduLuR̂sk − 1dl = s1 − cd3/2c1/2,
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kQ̂1skduLuR̂skdl = − s1 − cdc1/2,

while all otherkQ̂1skduLuR̂sk8dl are zero. By similar means,

one findskŜsl1, l2duLuQ̂1skdl=0—so thatMQS in Eq. sA4d is

indeed zero as we anticipated above. AlsokR̂skduLuQ̂0l
=kŜsl1, l2duLuQ̂0l=0, confirming thatM02=0. Using Eq.sA3d
gives

MQR= 3− s1 − cdc1/2 0

s1 − cd3/2c1/2
� �

�

4 . sA11d

Next we will determineMRR defined insA6d. For this we

needLR̂skd:

LR̂s0d =
n0 − c

Z2s0,0d
f− n1sn2 − cdn3 − s1 − cdsn1 − cdn2

− n1sn2 − cdg, sA12d

LR̂sk ù 1d =
n0 − c

Z2sk,0d
f− D1skdnk+1snk+2 − cdnk+3

− s1 − cdD1skdsnk+1 − cdnk+2 + D1sk − 1d

3snk − cdnk+1snk+2 − cdg. sA13d

Combining these expressions with those ofR̂sk8d in Eq. sA1d
yields

fMRRgkk8 = − s2 − c + c2ddk0dkk8 − s1 + c2ds1 − dk0ddkk8.

sA14d

Next to determine isMRS. Combining the expressions for

Ŝ in Eq. sA2d with those ofLR̂ in Eqs.sA12d andsA13d, we
see that many elements ofMRS are zero, while the nonzero
ones are restricted to

fMRSgkl1l2
= cs1 − cd1/2dl1kdl20. sA15d

The final matrix to determine isMSS, for which we re-

quire LŜsl1, l2d:

LŜs0,l2d =
n0 − c

Z2s0,l2 + 1d
f− n1D2sl2 + 1dsnl2+3 − cd

+ s1 − cdn1D2sl2dsnl2+2 − cdnl2+3

− n1D2sl2 + 1dsnl2+3 − cdnl2+4g,

LŜsl1 ù 1,l2d

=
n0 − c

Z2sl1,l2 + 1d
fD1sl1 − 1d

3snl1
− cdnl1+1Dl1+2sl2 + 1dsnl1+l2+3 − cd

+ s1 − cdD1sl1dnl1+1Dl1+2sl2dsnl1+l2+2 − cdnl1+l2+3

− D1sl1dnl1+1Dl1+2sl2 + 1dsnl1+l2+3 − cdnl1+l2+4g.

Combining with the expression forŜ from in Eq. sA2d, one
finds

fMSSgl1l2l18l28
= dl1l18

fsdl28l2+1 + dl28l2−1dcs1 − cd1/2

− dl28l2
dl10s1 + 2c − c2d

− dl28l2
sl − dl10dcs3 − cdg. sA16d

In view of Eqs.sA10d andsA15d, we need thel2=0 and
l28=0 components of the inverse ofz1−MSS. This matrix is
diagonal inl1 and l18 and tridiagonal inl2 and l28 for fixed l1
and l18. Thus, we can use Eq.s30d to write

fz1 − MSSgl1,0;l1;0
−1 =

dl10

ã1 − «̃1

+
1 − dl10

ã2 − «̃2

, sA17d

where

ã1 = z+ 1 + 2c − c2, sA18ad

ã2 = z+ cs3 − cd, sA18bd

and«̃1 and«̃2 result from the repeating part of the continued
fraction that results from applying Eq.s30d. Similar tog̃s1d in
Eq. s33d in Sec. IV A, they satisfy

«̃ j = c2s1 − cd/sãj − «̃ jd. sA19d

With the requirement that they go as 1/z for large z, the
solutions are

«̃ j = 1
2fãj − Îãj

2 − 4c2s1 − cdg. sA20d

The subexpressionMRSfz1−MSSg−1MRS
† in Eq. sA10d now be-

comes, using Eq.sA15d and sA17d–sA19d.

FMRSMRS
†

z1 − MSS
G

kk8

= dkk8f«̃1dk0 + «̃2s1 − dk0dg. sA21d

Since this matrix andMSS in Eq. sA14d are diagonal, the
inverse ofsz1−MRR−MRSfz1−MSSg−1MRS

† d is simply

Fz1 − MRR−
MRSMRS

†

z1 − MSS
G

kk8

−1

=
dk0dkk8

z+ 2 −c + c2 − «̃1

+
s1 − dk0ddkk8

z+ 1 +c2 − «̃2

=
dkk8

1 − c
F dk0

1 − 2c + c2/«̃1

+
1 − dk0

1 − 2c + c2/«̃2
G ,

where in the last equality we used again Eq.sA19d. Given
this last form, we can shorten many equations by using the
expressionh̃ j =cs1−cd / s1−2c+c2/ «̃ jd, which is explicitly
given by

h̃ j =
cs1 − cd

1 − 2c +
2c2

ãj − Îãj
2 − 4c2s1 − cd

, sA22d

and in terms of which we have

Fz1 − MRR−
MRSMRS

†

z1 − MSS
G

kk8

−1

=
dkk8fh̃1dk0 + h̃2s1 − dk0dg

cs1 − cd2 .

Inserting this result in the expression for the self-energy ma-
trix in Eq. sA10d, one obtains the result presented in Eq.s49d.
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