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Glassy dynamics and domains: Explicit results for the East model
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A general matrix-based scheme for analyzing the long-time dynamics in kinetically constrained
models such as the East model is presented. The treatment developed here is motivated by the
expectation that slowly relaxing spin domains of arbitrary size govern the highly cooperative events
that lead to spin relaxation at long times. To account for the role of large spin domains in the
dynamics, a complete basis expressed in terms of domains of all sizes is introduced. It is first
demonstrated that accounting for single domains of all possible sizes leads to a simple analytical
result for the two-time single-spin correlation function in the East model that is in excellent
guantitative agreement with simulation data for equilibrium spin-up density vak@s6. It is then

shown that including also two neighboring domains leads to a closed expression that describes the
slow relaxation of the system down to=0.3. Ingredients of generalizing the method to lower
values ofc are also provided, as well as to other models. The main advantage of this approach is that
it gives explicit analytical results and that it requires neither an arbitrary closure for the memory
kernel nor the construction of an irreducible memory kernel. It also allows one to calculate
guantities that measure heterogeneity in the same framework, as is illustrated on the neighbor-pair
correlation function, the average relaxation time, and the width of the distribution of relaxation
times. ©2005 American Institute of PhysidDOI: 10.1063/1.1897372

I. INTRODUCTION smallc, suggestive of a transition at0. More recently, the
East model has been analyzed to examine the nature of dy-
Despite much progress in recent years, many aspects gbmic heterogeneitiés'?in frustrated systems.
structural glasses an4d undercooled liquids still escape a com- The typical relaxation times present in systems exhibit-
plete understanding* Rather than studying the behavior of jng frustration can be retrieved from time correlation func-
molecular glasses, one often investigates the behavior qfons. In glasses, mode-coupling theory is one of the pre-
simple models in the hope to capture the basic physics Qfominant descriptions for these correlation functions.
such systems. The so-called East model is one of thesgeyeral approaches to mode-coupling theories exist. In the
simple modelS. It is a classic Ising model with a trivial context of glasses, that of Gotze and co-worket%?°and
Hamiltonian in which the stochastic dynamics governing thg g theusséP has been widdy used.
change of spin leads to a complicated and highly cooperative  The approach of Gétze and co-workers and Leutheusser
evolution of the system. In the East model, any spin hagypresses the time correlation functions in terms of a
finite probability to flip from up to down or vice versa only if memory kernel and then uses a certain ansatz in which the
the spin to the east of ii.e., of higher lattice indeiis up.  memory function is written in terms of the correlation func-
Models of this kind are generally called kinetically con- tions themselves, yielding self-consistent equations. Oppen-
strained models or facilitating spin ”_‘0983@- _ heim and co-workers have addressed the formal points and
Such models are designed to miffic*the kind of dy-  justification of mode-coupling theories in Fourier spaté®
namics that take place in glassealthough the East model Along similar lines, Anderséii has formulated a phase-
itself does not have a glass transition at any finite Spirspace mode-coupling theory for general fluids that leads to
density; the decay of the single-spin time correlation func- self.consistent equations for time-dependent correlation
tion at low densities is a stretched exponerftijé'lfollowing functions.
a functional form similar toﬂthat of the dynamic structure Mode-coupling theory can be applied for both determin-
factor in glassy systemS™" In fact, the typical Spin- istic and stochastic systems. For some systems, such as the
relaxation time has been shown to behave as7l0g East model, the application of the most commonly used
~log?(1/c), wherec is the equilibrium density of up spins, mode-coupling ansatz necessary to close the resulting equa-
heuristically by Sollich and Evafiand rigorously by Al-  tion of motion for the spin-autocorrelation function leads to a
dous and Diaconi¥’ indicating an extreme slowing down for spurious transition from an ergodic to a nonergodic phase at
finite values of the spin concentratior) a result that is
PElectronic mail: vanzonr@rockefeller.edu clearly at odds with simulation results. To analyze the failure
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of the closure approximation in mode-coupling theory, Pittsstate(i.e., a configuration of th&l sping, the canonical equi-
and Andersen have presented a diagrammatic treatment tHairium distribution can be written as

yields similar equations to those of mode-coupling theories N-1
of the glass tl’.anSItIO?l.ThIS treatment lends itself to a clo- p(n) = I [en+ (L -0)(1-n)], (3)
sure assumption that is very similar in kind to the mode- -0

coupling theory of Gotze and co-workers and Leutheusser.
Pitts and Andersen propose alternative closure assumptio§§ere Eqs(1) and(2) were used, as well as the fact timt

to this mode-coupling theory by summing subsets of dialS either 0 or 1. Note that each spihas a probabilite to be

grams. The resulting predictions are in good agreement wit§P (N=1) and 1-c to be down(n;=0). N 3

simulations for high concentration of up spins, but still decay ~ For the dynamics, consider the conditional probability

too rapidly at lower spin density. Recent improvements orflensity Ui(n.n’) to be in staten at time t given that the

this scheme have been carried out by Wu and*Caased on ~ System was in state’ at time 0, which satisfiés

:SCS?JTntEtri\gE:.n of matrix methods and mode-coupling closure Unn’) = Eﬁ: [W(n,7i)Uy(f,n") — W(R, n)U,(n,n")]
Regardless of the precise formalism, mode-coupling

theories aim to describe slow long-time behavior, and so = Eﬁ(ﬁ,n)Ut(ﬁ,n’), (4)

should include all the “slow modes” of the system. For hy- i

drodynamics of a simple fluid at moderate densities, thesg, "= Nt i i

slowymodes are well Enown, namely, the density, momen—alIth Yo n") = Herle,W(n.,n Jdtis the probability to

ake a transition froom’ to n in a timedt. By definition,

tum, and energy modes at large wavelengths. Correspon (n,n)=0. Defining

ingly, when applied to Fourier modes of these hydrodynami-

cal fields, mode-coupling theorfg.g., in the formulation of A(n,t) = > A(N)Uyn’,n) (5)

Oppenheim and co-workergields well-defined perturbative n’

results when the correlation length is finite and the thermo- .

dynamic limit is taken. However, in the case of the Eastffom Eq.(4) it follows thatA(n,t)=%,,£(n,n")A(n’,t) or

model, the relevant slow modes are less obvious, and previ- -

ously developed mode-coupling theories for this Alt) = LA, (6)

modef******may have missed some of these slow modesynere the Liouville operator is a linear operator on the

In fact the absence of some slow modes provides a possibl#i_gimensional Hilbert space of functions of The formal

explanation for the problem these theories have with describsg|tion of Eq.(6) is A(t) =€“'A(0).

ing the long-time behavior at smatl For the East modeM/(n,n’) can be written as a sum
The main purpose of this article is to identify the rel- gyer possible moves, i.e., spin flips of individual sites

evant slow modes in frustrated spin systems and to descrilghere a flip of spim; is possible only ifn.,;=1 (using the

the impact of the coupling of these modes to a specific Sp"boundary condition thahy=1), as the expression fow
variable. It is demonstrated that the existence of slowly reyears oui

laxing spin domains of arbitrary size suggests a natural basis
of slow modes in which quantitatively accurate but simple ,
approximation schemes are easily formulated for many quan-  M(n:n") = 2 [Coh1dy0+(1-C) 5ni05n{1]ni+1_H_ Sy
tities of interest in the study of slow heterogeneous relax- =0 7

N-1

ation. Correspondingly, the Liouville operator can be written as
N-1
Il. THE EAST MODEL Ln,n)=>[(1 ‘C)5ni1(5ni’o‘ 5ni’"i)
The East modélis a linear chain oN spins, which are =0
numbered from 0 tdN-1, with each spin allowed to assume +¢8,0(8v1 = Sy Inisal ] 8 (7)
one of two values at any given time, here taken to be up or s H o

down. Occupation numbens;, are defined such that=1
when spini is up and O if it is down. The static properties of
this model follow from the Hamiltonian

N-1

The equilibrium distribution in Eq(3) will serve as a
weight for the inner product on the Hilbert space, i.e., the
inner product ofA(n) and B(n) is (A|B)==,p(n)A(n)B(n)
=(AB). Only real quantities will be used in this paper, so

H= MZ n;. D there is no need to define a complex inner prodatthough

=0 this is straightforward The time correlation function of\
Using the canonical distribution~exp(-BH), the average and B can now be written as(A(t)|B). When
occupation per site if the system is at equilibrium at an in-W(n,n")p(n")=W(n’,n)p(n), i.e., when detailed balance
verse temperaturg is found to be holds, as it does in this model, is Hermitian with respect to
c=1/(1 +ePm). ) th_e _inner product. In cqntrqst to stochas_tic sy_stems,_i_n deter-
ministic systems the Liouville operator is anti-Hermitian. It
As Bu has little physical significance in the current context,should be noted that the condition of detailed balance also
the densityc will be used as a parameter.rifdenotes a spin guarantees that the limiting stationary distribution of the
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Markovian dynamics is the equilibrium distribution (3), only static information, while the memory kerngIP(t) in-

provided the underlying Markov process is ergoﬂic. volves the time correlation of the fluctuating fore&). Tak-
As remarked by Pittet al.® different sites are not only ing the inner product witt#, Eq.(12) yields an equation for

statically independenfcf. Eq. (1)], but alsodynamically To  the correlation functiorG(t)=(A(t)|A):

see this, consider the normalized single-site fluctuation

t
(1) - 3(t) = ME - D(t—7) -
Ap=nW-c ® GH=M G(t)+f0|v| (t-7)-G(ndr. (15
Ve(l-c)
which Satisfiegﬁiz(t»:l and(f(t))=0. Note that To solve this equation, a Laplace transform will be used,
A R defined as

L0 = =N, 9)

=~ chy + VoL~ O, a0 ~ C@= Jo erea e

using Egs.(7) and (8). Thus, the time derivative ofy; de-

pends on the product df, andf;,;. The derivative of that
product will in turn depend om;,,, and so on. Thus);(t)

=eftfy;, involves onlyf; with i=i’. From the static indepen-
dence of any sité and any other sité” with i” <i’<i, it ~ E ~Dw1
follows that({f,0;, (t)y=(Ay){N;.(t))=0. Because is Hermit- G=(zZ-M"-M")", 17
ian, also(f;»(t)f;,)=0. So all time correlation functions be- S e D
tween different sites’ #i” are zero. whereMP= e MP(dt.

: . 5
Given the dynamical independence of different sites, we  |f A contained all the slow behavior, thé(t) would
are interested in the nontrivial time correlation function ~ P€ @ quickly decaying function that could be replacs%dsgby a
delta function in time and integrated over in H45).”™

C(t) =(m(HN(0)). (1) unfortunately, this is typically not the case because the pro-
jection operatof1-7P) only removes part of the dependence

In the limit N— o0 with i fixed, this is independent ofdue to ; g .
translation invariance. This single-spin time correlation func-2" A For instance in a fluid, the long-wavelength modes of

tion in the thermodynamic limit is the main quantity of in- d€nsity, momentum, and energy are slow because they cor-
terest. respond to densities of conserved quantities, but only at low

densities is it enough to consider only these modes as slow.
Extending the seA by multilinear mode$** can help and
lll. PHYSICS OF THE SLOW DYNAMICS can be used to setup self-consistent equations which are ex-
gct in the thermodynamic limit provided there is a finite dy-

Here and in the following, we adopt the convention that
guantities with a tildg™) are z dependent. The solution in
Laplace space of Eq15) is

In a mode-coupling framework, dynamical equations ar ) , 31-34
derived for the time correlation functions of slow modes inn@mical correlation lengtfr.

the system, which involves a memory kernel that is again S 1S I%nz?)‘_"ég‘ from the extensive work of Gétze and
expressed in terms of the correlation functi6iis.*°To es- co-workers® and Leutheussét in deterministic sys-

tablish notation, letA, be the slow modes of the system tems, such self-consistent equations can give rise to a glass

determined from physical arguments, wihan index run-  transition. _

ning over the slow modes. It will be assumed tha)=0 (as If, on the other handA is a cs)mplete set, then 1P=0
could be achieved by subtracting the avejaged thatA, and consequ_entlyo(t):o and M (t)_:_O. In th.'s case, the
are orthonormal, i-e<Ak|Aq>=5kq (as could be achieved by a above fprmall_sm corresppnds_ to writing HQ_) in a particu-
Gramm-—Schmidt procedureFor brevity, theA, are taken lar ba85|951.4Th|s formu_latlon_ is often apphed_ to the East
together in a vectoA. In the projection operator formalism, model."™"When working with a complete basis set, the set

the component along. of any other physical quantit is 3“” hast to bet_truncated at some Ie(\j/el I|tn pratc_:ncle. This intro-
found using the projection operatorPB=(B|A)-A uces truncation errors, or, viewed alternatively, a nonzero

b .
= (B|AJA, where - denotes a vector product, i.e., a sumM (t). To get beyond the truncation problem, one makes an

< . : ... _ansatz for the memory kernel in terms of the time correlation
overk, as indicated. Using a well-known operator identity in . . o .
. function of interest[here C(t)], yielding a self-consistent
Eq. (6), one can derive that

equation. However, in stochastic systems, a glass transition

AGH) = ME - AH) + tMD — ) A(Ddr+ 17 will not be found if such an ansatz is used for the memory
() =M= Al o (t=7) - Aln)d7+ (1), (12 Lermel, due to the Hermitian nature 6 Rather, an ansatz
needs to be used for the so-called “irreducible” memory
where ¢(t) =e*P£(1-P) LA and kernel*®**?Then, a glass transition can be found for finite
. 9 . . .

ME = (A|L|A), (13 n the !East modeq: 'However, S|mulat|qns make it clear that
there is no transition to a nonergodic phase at a nonzero
value ofc. Somewhat better schemes to improve the ansatz

MP() = (¢ (D] ). (14) b

have been developed sintebut generally, they lead either
Note thatME and MP(t) are matrices whose dimensions areto a transition or to a time correlation function that decays
equal to the number of slow modes and tihft contains too quickly.
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Essential for the success of mode-coupling theories for i+k-1
fluids at lower densities is the finiteness of the dynamical  Dj(k) = 1T (1-np. (20)
correlation length, which gives a cutoff length and certain =
exact 3f2actor|zat|on properties in the thermodynamicygie that each factail —n;) only yields a contribution when
limit.>~““However, for the East model, no such length scalen:ol i.e., when spirj is down. Thus, the consecutive se-
exists, as is seen when one contrasts the result of the Sca”'&;ence ofk factors of(1—n;) in D;(k) represents a continu-
of the decay tim&° versus the diagrammatic approach of ! ;

) o _ ous domain ok down spins starting at siie Furthermore, in
Pitts and AndersenWhen diagrams are truncated at a Cer-gqs (18) and (19), the normalization constant are chosen
tain level, corresponding to taking into account only spins

A2\ — /T 2y — ; i
within a certain distancé, the memory kernel becomes a such that(Qp)=([Q.(k)%=1, which means, using Eq3),

polynomial in ¢ of which the highest power ig', which that

means the typical time can scale at the slowest asHow- Zo=\c(l-c¢), (21)
ever, forc—0, the time scale diverges faster than any in-

verse power ofc.**' So clearly the spins at all positions, 7z (k) = (1 - c)*2. 22)

arbitrarily far away, need to be taken into account. o

A second way to see that the dynamic correlation lengttiThe factorsn;—c in Egs. (18) and (19) make the{Q,,Q,}
is unbounded is to note that while the static correlationinto an orthogonal set, since each such factor is zero on
length is zero, dynamically, the decay of the time correlationaverage unless it is matchdchultiplied) by a factor also

function C(t) is influenced by other spins. For example, if jnvolving n;. For example wherk#k’ in (él(k)|él(k')>

there is a large domain of down spins to the east of a givefhere is an unmatched factor, eithgg;—c or n,;—c, so it
spin, that particular spin requires a long time to flip since allis zero.

down spins in the domain must flip at least once. Hence, the . RS-
decay is correlated with the existence of this domain, and th Taking the collection{Qo,
dynamic correlation length is therefore at least of the order o
the size of this domain. But domains of all sizes exist and
larger-sized domains will contribute to the behavior of the £ | (Qul£]Qo> (Qol£]Qp

time correlation functiorC(t) at longer times. Even if one is M=E=1| - A ~ ) (23
only interested in the bulk of the behavior of the time corre- (Q1l£IQe (QulLIQp

lation functionC(t), for which the relevant domains are of A .
typical size 1¢£, this size diverges as— 0. Therefore, it is whereQ, without a valu_e ok denotes the column vgct(}n
no surprise that fixed spatial truncations do not work below ghe ke} or row vector(in the bra composed of allQ;(k).
certain value ot and that mode-coupling theories using suchFrom Egs.(7) and(9) it follows that

truncations have problems in describing the long-time behav- - —(ng-o)ny

ior of the time correlation functio€(t). For a different for- LQy=——""TZ"", (249
mulation of the importance of domains, see Garrahan and
Chandlet**? and Wu and Cad*

Ql} for A in the projection
rmalism of Sec. lll, the matriME in Eq. (13) which de-
ermines the dynamics becomes

Thus, physically, the origin of the slowness of the dy-  £Q,(0) = — (1 ~0)(o = )y =~ (N = ©) (M = c)nzl (24b)
namics seems to be related to the absence of a finite dynami- Z,(0)
cal correlation length and the existence of arbitrarily large
. . R 1
domains of down spins. £Quk=1) = 511 =0)Mg = DK D= O
1

= (ng— ¢)D1(K) (N1 — C)Ns2] - (240

We remark that a convenient diagrammatic appro@chit-

ted here for brevityto these expressions and the calculation
Consider the leftmost spin, in a semi-infinite chain of  of the corresponding matrix elements®fcan be found in a

SpinS. East of this leftmost Sp(he., at sites > 0), a domain preprint version of the current pap@r_

of typlcal size 1£ filled with down SpinS exists. In Sec. Il it A few words are in order on how to obtain the expres-

was argued that the presence of these domains is essentialgign of £X given that ofX. The Liouville operatorl acts

the dynamics, so they should somehow be included. This ighuch like a differential operator and can be shown to follow

achieved by defining thésingle domain basis which is  the product ruleC(AB)=A(LB)+(LA)B, providedA and B

IV. THE DOMAIN BASIS

A. Single domains

composed of the orthonormal basis vectors do not involve the same site. Thus, £ acting on expres-
. mp-c sions like those in Eqg18) and(19) yields a sum of terms
Qo= 7 (18)  where£ acts on each factor individually. Each factor is ei-
0 ther (nj—c), nj, or (1-n;), and
Ql(k) - (no_C)D]_(k)(nk-;-]__C)7 (19) E(n] _C):Enj = —.C(l—n]-) :_(nj —C)n]-+1. (25)
Zy(k) Thus, £ acting on a factor involvingy; introduces a new
where factor n,4. If the expression already had a factor involving
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nj+1, one needs to multiply the new one with the original one,exactly. In particular, the top-left element of the inverse of a
and this gives the three possibilities;,,(nj;;—c)=(1  symmetric tridiagonal matrix can be written as a continued
—C)Nj11, Nj+aNj+1=Nj41, @ndn,4(1-n;,1)=0. As the last one fraction:
shows, £ acting on a factor involvingy; yields zero if a

factor (1-n;,,) is present. The reason why there are so few a, by
terms in Eq(240) is that althoughC could in principle act on b, a b, 1

all sitesj in @1(k), most have a factail —n;,,) next to them b, a; - = bi ' (30
and yield zero. oy a - 02
The matrix elements(Qy|£|Qp), (QolL£|Q:(k)), and - ;

(Qu(kK")|£]|Qq(Kk)) are found by taking the inner product of the

expressions in Eq$24) with those ofQ, andQ;(k’) in Eqs.  Combining Eqs(27)~30), one finds

(18) and (19). Because the factorgn;—c) need to be = 1
matched, the only nonzero contributions turn out to be for z+c  c(l-o

k'=k-1, k, andk+1, and =) ve(l-c) z+1 -cyl-c¢
- - c= 1 +c(2-¢)
(Qol£IQo) =~c, (262 Cvime zreene
11
(Qu(0)|£]|Qo) = = (1 -0), (26b) _ 1
c(l-c)
- - z+c- 5
(QuO0)|£]Qu0) =~ 1, (269 S+l c(1-0
c’(1-c)
- 2 z+c2-0)-————
QLI =~c(2~0) if k>0, (260) 2+C2-0)~ ..
(31
A A - =c1-¢
(Quk+1)[£]Qu(k) = =cV1-c. (268 The repeating part of this expression is
Using Eq.(23), ME becomes the infinite tridiagonal matrix (1 -0)
YV = 32
-C —\’m ! z+c(2—c)——cz(1_c) >
M== — s @27
cvl-c  -c2-¢ . This 3 clearly satisfies
) . .
~1) _ c(1-c¢) (33

vyhere the diagonal dots dgnote repetition of the last men- 7~ z+c(2-0)-F2’
tioned expression on that diagonal.

At this stageMP(t) in Eq. (15) andMP in Eq. (17) will ~ which is solved by
be set to zero. The reasons for this are twofold. First, it 1
allows an explicit solution for spin-autocorrelation functions 3/ = Z[z+¢(2 —¢) - V4cz+ (z- cd)?]. (34)
to be obtained that is in good quantitative agreement with 2
simulations if the density of up spirsis not too low. Sec-

ond, we will later complete the basis such thR is in fact
strictly zero. Equatior{17) yields in this approximation

[Note that the solution of Eq33) with a plus sign in front of
the square root in Eq34) does not go as ¥/ffor largez, and
is therefore not in agreement with E(R2)]. Inserting this
result in EQ.(31), one obtains the explicit form

G=GW=(z-M5, (28)
Here, the superscrigtl) indicates that the result is only a co = 1 i (35)
first approximation. Below we will make this into a system- Z7+c- 2c(1-c)
atic approximation scheme in which further, more accurate z+2-(2-c)c+\4cz+ (z- c?)?

approximations can be obtained.
According to Eq.(18), the Laplace transform of the cor-
relationC(t) in Eqg. (11) is the top-left element of the matrix

Gy

The explicit correlation function in Eq(35) can be
Laplace inverted numerically using Stehfest's algoritfifi
(for example, inMATHEMATICA %6). For various values of,
the results are shown in Fig. 1 and compared with data from
o - simulations on the East model. Despite the simple form of
f dt €*C(t) = Gy. (29) W in Eq. (35), there is excellent agreement between this
theoretical result and the data for 88<1, reasonable
To perform the matrix inversion in E§28), one uses the qualitative agreement up t~=0.5, while the predicted de-
fact that the inverse of a tridiagonal matrix can be performedtay is clearly too fast foc<<0.5.

C=
0
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] ' ' ‘ " simuation c=0.8 ' + ] spin—spin correlation function due to the projection of the
1 single domain c¢=0.8 . . .
simulation c=0.6 dynamical evolution onto a space orthogonal to the linear

single domain

simulation ,fﬁifj < basis sefA. In other words, the single-domain basis does not
M mulatlon =04 @ span the ergodic component and fails to capture all the slow

08 r

ingle d in c=0.4 . . . .
o ey = dynamics of the spin fluctuation varial®. To represent the
.6 single domain ¢=0.3 b . . . . .
- g missed slow evolution, the single-domain basis set must be
S A expanded to include additional slow modes and their cou-

04 o single domain ¢=0.15

pling to the linear modes must be computed.
To deduce the appropriate extension of the basis, it is

o2 b 5 y helpful to realize, as Fig. 1 shows, that the decaZ@j that
3 is predicted by the extended linear badi®y,Q}, is too

0 BRI TIVELT VIR rapid. A reasonable explanation of this particular deviation is
o1 ] 0 = that in the single-domain basis, the final spig, in Eq. (19)

; decays regardless of the spin configuration to its right. As a

result, any slowing down effect of a persistent down-spin
domain to the right ofn,,; is missed. It therefore seems
natural to try to fix the too rapid decay of ti@&t) by aug-

FIG. 1. Results for the single-spin time correlation functi®ft) from the

single-domain basi@o,él} [by numerical Laplace inversion of EB5) in
Sec. IV A usingMATHEMATICA ], compared to simulation dat&indly pro-

vided by Professor H. C. Andersen menting the basis with a second down-spin domain,
Ol = (no =)D (1) 11Dy 4o(12) (M) g2 =€) 36
E. Inclusion of neighboring domains: A complete 22 Z5(14,15) ’
asis

. . . . which carries an index doublét;,1,) of which each member
There is a need to extend the single-domain basis bg- can take integer values from zero to infinity, and
cause it does not properly capture the long-time behavior 5(11,1,)=c33(1—c)11*1212 These are orthogonal @,, as

C(1) f(_)r c less than 0.5, as seen from Fig. 1. 'I_'he Iagk ofWeII as t0Q,, since in<60|62(|11|2)>: the trailing factor
quantitative agreement between theory and simulation a ~ S .
long times implies essentially that there is an important SlOV\fQ'l”'sz_C) of Q; is not matched, yielding zero, and in
behavior in the memory functiod®(t) given in Eq.(14) that  (Qu(K)[Qa(l1,15), it is impossible to match it with the trail-
cannot be neglected. ing factor(n; 4 ,42—c) of Qy(k=I;+l,+1) without having the

This situation is reminiscent of that in fluids. There, one¢;ctor n..1 from O, multiplying a factor 1, ., from Q,
1 1 3

starts out describing time correlation functions in terms of,ich yields zero. Along similar lines, it is easy to establish

the linear dependence on the hydrodynamic fields of mass -
L7 that theQ,(I{,l,) are also orthonormal among themselves.
momentum, and energy density, i.e., one takes these to com- : : )
) 38,39 There is no obvious reason to stop this procedure at the
prise the sefA of Sec. Ill: But at lower temperatures or . e N . :
two-domain, or “bilinear,” level and, in fact, the basis can be

higher densities this does not suffice becaSét) turns out . )

: . . . extended to a complete set in the relevant ergodic component
to no longer be a fast decaying function. To fix this situation,, . : )
. . : in a straightforward fashion. The elements of this complete
i.e., to represent the missed slow behaviorM?(t), one . . . .

: : basis are written as a sequenceaoflown-spin domains of
needs to augment the linear basis by vectors orthogonal to Igiﬁerent sizes separated by sinale up Spins:
For this, one can take productsAf{with proper subtractions j» SEP y singie up spins.
to assure orthogonality these additional basis vectors are - _ ng—c
called multilinear modes*** The coupling of the linear Q“(kl"“’ka)_Za(kl,m,ka)Dl(kl)nkl‘lekﬁZ(k?)
modes to the multilinear ones “renormalizes” the bare values
of MP found using onlyA to MP+3.(z), whereX, is a self-
energy The z dependence of this self-energy is such that it X (Mg 4k 40~ C). (37)
can describe slowly decaying behavior such as long-time _ ¢
tails. Since the multilinear modes can be interpreted as proddere,a=0---, kj=0---(j=1---a), and

X M +kt2” I:)k1+- . -+ka_1+a( Ke)

ucts of linear hydrodynamics modes, this procedure amounts M2(1-0)Y2 if a=0
to a nonlinear coupling of hydrodynamic modes and is hence 5 (Ky,... k) = N
called mode-coupling theory. T | ez~ E K2 otherwise.

Similarly, if for the East model, the matrME is taken to
be represented at the linear level by Eg7), where the
linear basis(using analogous nomenclature as aav@M- | j5 easy to see that th@, are all independent: the inner
posing the set of slow variables is taken toAe{Qy,Q1},  product of two of them is zero unless they have the same
then the memory function corresponds to an infinite squar@umber of factors, so that both trailing factalrg —c) are
matrix represented at the linear—linear level that effectivelymatched. But then the interiors of the expressions also have
renormalizes the matrix elements Mf to ME+MP, accord-  to match, otherwise factorg, and 1-n;, are multiplied and
ing to Eq.(17). Hence,MP takes the role of the self-energy this gives zero. The only nonzero inner product of a
here, and must describe contributions to the decay of th®,(k,,...,k,) is therefore with itself. Due to our choice of

(38)
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normalization([@a(kl, ...,k,)]»=1. Since eaCl@a is ortho- humber of domains is useful in developing a systematic ap-
normal to all others, each contributes a unique direction irproach to generate successive improvementEftor lower
the Hilbert space to the basis which could not be formect. Since the basi®={Q,} spans the ergodic component of
from the others: Th&, are independent. Qo it follows that o(t)=ePL(1-P)LQy=0 and the

To also establish completeness, we will now count thememory functionMP(t) vanishes. Hence, from Ed17),
number of element of the above basis in the finite system of(z) = (z1-M)-1, where the full matrixM=ME in this com-
N spins. In that system, there exists orf)y, for which « plete basis can be written as
+1+2E k<N (which also limitsa<N). Elementary com-

binatorics show that the number of differey for a givena Moo Moy
) N-1 S N-1, N-1 '\/|-1L M M
and N is . The total number o, is thus =" M=| ot it a2 , (39)

=21 Thus the above set of¥2! basis vectors covers only

half of the full Hilbert space, which has'2limensions. But

it is easy to see which basis vectors are missing and why they N - ) o

are not important. The expression in EG7) always starts WhereM,;=(Q,|£|Qp) and it was used that this is zero un-
with no—c, even though the first spin can have two valuesless|a—pB/<2, as can easily be showlso, the diagonal
Independent vectors can be found by taking a different exdots do not denote repetition now: .z can be different
pression for the first spin. In fact, one can take 1, i.e., oné>€eneralizing Eq.(30) by repeatedly applying the matrix
could consider variants of the basis vectors in Bf) in  €duality(see, e.g., Ref. 47

which the factor of(ny—c) is not present. We call the:{v@ﬁ, . cdT-1 cdT-1_p—1
i A ac [a-F] -[a-$] b
of which there are as many as there &g These new vec- de ot a1 o1 ,
tors are orthogonal to each other as well as toQhdecause d b - [b B 3] da [b - X]

in (Q,Qp) the initial ny—c of Q, is not matched by, and (40)

(ng—c)=0. Thus, theQ, are the missing basis vectors. J—|ow- one finds

ever, they are completely unimportant here becauseQthe
are also orthogonal t6Q,, as is seen from the fact th&Q,, zZ1-Mgg —Mg -1
will alwgys have the fa_ctvon(_,—c[ﬁ(no—c)_:—_(r_10—_c)n1] so 5 Mgy ZI-My -Mgp,

that the inner product witkd is zero(for this it is important C(2
not to have periodic boundary conditions

So the basis se, is not a complete basis for all pos- AR EE
sible spin configurations, but is a complete orthonormal

basis for all spin configurations to which ti@, couple. _ 1 (42)
These considerations also imply that the East model is ] MOlMgl

not ergodic: the state space contains at least two ergodic zl = Mqo - MM

components, which are such that a configuration in one of Zl - My - — =12

them can never make a transition to any configuration in the

other. Noting that the space spanneddycontains all quan-

tities insensitive to the value af, one realizes that it con- _ 1

stitutes an East model with an effective lengthNof 1. The T MoiMJ, ' (43)
argument above then shows that the state space of this zl =Mgo— ~

smaller East model can also be split into at least two ergodic 2l =My - 214(2)

components. Applying this argument recursively reveals that . i _ i
there areN+1 ergodic components. Theth ergodic compo- v_vhere the self-energy matrix at the linear—linear level is de-
nent consists of functions not sensitive to the values of spingned to be

no through somen,,_;, with 0<p=<N, and has ¥ dimen-

T .
Ny M1, My, -

(41)

sions if p<N and one dimension ip=N. The collection of 511(2) - MlZMIZ - (44)
these ergodic components has 3E 2N P1=2N dimen- = Mo MysM3,
sions, and thus indeed spans the full Hilbert space of the spin 2271 = Mag— ...
chain of lengthN.

Since we are interested in the time autocorrelation func- N
tion of spinng, the relevant ergodic component is the one - M3.Ms, . (45)
spanned byQ,, and we conclude that th@, are the only Zl = My = 34(2)

basis vectors needed. Having established the “relevant com-

pleteness,” one can take the linhit— again, so we need For convenience a nonstandafelit unique notation for a

not worry about the boundary condition imposedmn matrix fraction has been introduced here, such th&,iB,
The extension of the basis set to include an arbitraryandC are matrices then

Downloaded 08 Sep 2006 to 142.150.225.30. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



194502-8 R. van Zon and J. Schofield J. Chem. Phys. 122, 194502 (2005)

AB ~ 1 1
—=A.CLl.B. (46) CcO(z) = =—, (47)
C z-Myy z+cC

while truncating at the first, linear level yields the result in
e%q (35). Following this procedure further, the first correction
II the linear basis results involves evaluating the self-energy
in the approximation where one ignores the effects of three
domains and higher, i.¢cf. Eq. (45)],

This notation saves a lot of space and avoids many nest
parentheses and inverses that would be required in more
standard notation. We remark that E41) is similar to the
matrix formalism of Wu and Cat’ while Eq.(42) has simi-
larities to the continued fraction formalisms of M8H° and < M M1,
Schneider® The structure of Eq(41) is that of a mode- (2= 2-M,,
coupling theory in which the role of mode order is played by
the number of domains. The effect of the higher-order mode§orresponding to a bilinear type of mode-coupling theory.
is to renormalize the “transport” coefficients approximatedDue to the simplicity of the coupling with respect to mode
by ME at the linear level. order and for different domain sizes, an explicit expression
We will make subsequent approximations by truncatingfor this gpproximate self-energy can be obtained. In the Ap-
Eq. (42) at ever deeper levels. In contrast, Wu and Cao—irpendix,24(2) is explicitly evaluated to be

(48)

addition to splitting the infinite matrix up differently—pose a - -
: ; 7 —Vl-cmp
closure relation between memory functions at ever deeper — o N
levels!® For the first few levels at least, these involve explic- < _|-Vi-¢p (A-Om+7, —V1-Cpp
1~ — e

itly solvable quadratic equatioféL.T (2)” and “LT(3)"] or a -V1-¢» (-0
cubic equation[“LT (4),” which works very well up toc .
=0.2]. Deeper closures, not contained in Ref. 14, may not be
explicitly solvable. (49)

By truncating Eq(42) at ever deeper levels, i.e., setting \yhere the funct|0n37J are given by Eqs(A18) and (A22).
M.0+1=0, corresponding t&,,,(2)=0, for increasingx one  Using this expression for the self-energy, the linear—linear

gets expressions which work well for ever lower values.of  matrix G(z) of Sec. IV A[which is in fact the top-left block
denoted asC'®(z). For example, truncating at the zeroth of the inverse matrix on the right-hand side of E4l) in-

level gives corporating the zeroth and first leyé$ renormalized to

~ 0 o0)\[*

Gg>:[zu_mE_( ) )} 50

0 21l
z+c Ve(l-o) -t
Ve(l-¢)  z+l-Tp =V1-c(c=7)
= —Vl-clc=7) z+(2-0(c-7)+(1-0(7-7) -Vl-clc-7) , (51)
-V1-clc=7) z+(2-c)(c-7)
|

from which the single-spin time correlation functia®® alc,z)=z+1-
:[G§>]11 is computed with the continued fraction expression (1-c)(c-7)?

in Eq. (30) to be T2+ 2-0(Cc-T) + (L0 (Ta-T) -3

(53
¢ = 1 (520 InEq.(53), the repetitive parj? satisfies
c(l-c)’
Z+C— _ _~\2
a(C, Z) =2 = (1 C)(C 7]2) (54)

z+(2-0)(c=7) -3
wherea(c,2) is This is solved by
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1l ‘ simulation c=0.8  + | gence to a set level of precision, such a procedure provides a
7 extended basis ¢=0.8 . . .
simulation c=0.6 systematic and numerically tractable method of predicting

os | s » the decay of the spin-autocorrelation function for arbitrary
' il = values ofc.
extended basis c=0.4
0 Aiymlllutio_l ~=(). ; =
0 extended basis ¢ L ———
o RlER 0D V. RELAXATION BEHAVIOR

extended basis ¢=0.2
O = oncm ;. O One of the main advantages of the matrix method out-
lined here is that it is straightforward to obtain analytic pre-
dictions for rather detailed features of the dynamics. For ex-
ample, one of the commonly calculated quantities from
simulation data is the relaxation time For systems exhib-
X , ) 3 , : e iting such nontrivial relaxation behavior as stretched expo-
01 1 10 100 1000 10000 100000 nential, the definition of the relaxation time is a matter of

! choice. Perhaps the most sensible way to view the relaxation

FIG. 2. Results for the single-spin time correlation funct@(t) using the  time for such systems is to consider it as the weighted aver-
extended basi§Qy,Q,,Q,} in Eq. (52) of Sec. IV B (numerically Laplace ~ age of a distribution of relaxation times. For example, based
inverted USINQATHEMATICA ), compared to simulation data. on the spectral decomposition of the Liouville operator, one
can formally write the spin-autocorrelation function as a
weighted sum of exponentials with relaxation timgsi.e.,
C(t)=X,c, exp-t/7,). Since the Liouville operator is Her-

C(t)

04 r

02

Y2 =2z +(2-c)(c-7p)

—\4(c-p)z+[z-clc- )T} (55  mitian and the spin variables are real, one is guaranteed that
_ _ the relaxation times;, and coefficients,,=(Qq| ¥/)%, where
Note the resemblance wiffi" in Eq. (34). |y are the rightand lefy eigenvectors of the Liouvilliart,

As before, the explicit result in Eq52) is inverted nu-  are real and positive. Furthermore, sinfc&=0)=1=3c,,
merically using Stehfest's algorithifi=*® For various values  the coefficients:, are proper weights for the relaxation time
of ¢, the results are shown in Fig. 2 and compared with data,. However, sincel is of infinite dimension, its spectrum
from simulations of the East model. Notice that there is acan be(partially or completely continuous, so the more gen-
huge improvement over the results obtained using only theral expression is
single-domain basi§Q,,Q,} in Fig. 1. There is now excel-
lent agreement between the theory and the data $00.4, C(t) = f p(7)exp(—t/7')d7’, (56)
and reasonable agreement upcts 0.3. Furthermore, while
the theoretical decay is still too fast fer<0.3, the small-  \here p(7)=0, p(+ <0)=0, and [p(+)d7=1. One can
time behavior is captured beautifully. In particular, the shoul-therefore define thaveragerelaxation time as
der that appears in the simulations for lows reproduced by
the.extended theory as well, something the single-domain T:fp(T')T'dT'. (57)
basis could not do.

In the low-temperature regiosmall c), the long-time
behavior of the spin-autocorrelation function predicted by
the two-domain basis set is well described by a stretched . p(7)
exponential C(t)~exd—(t/7#] with a temperature- C(2) =f de':
independent stretching exponent 8f=0.6. Although it is
encouraging that the stretched exponential time profile is inwe see that
deed predicted by the theory, simulations indicate that in fact 5
the stretching exponen® should have a weak temperature T:Jp(fr’)r’df’ =C(z=0). (59
dependence! with 8 decreasing in value as the temperature
decreases. The origin of this discrepancy between our theomjote that in the case in which a single relaxation time
and numerical simulation is not clear and is under investigadominates all others, one observes that 7 since p(7')
tion. %5(7_1_7_*).

In principle, the effect of three down-spin domaifts- Note also that in taking the poimt=0, the expression is
linear modes can be included in the same spirit, i.e., by sensitive to long-time behavior. This in contrast to, e.g., the
evaluating the self-energy at the two-domain leXg)(z) us-  average ratefp(7')(1/7')d7 which by Eq. (56) is just
ing matrix methods similar to those applied to obtain Eq.—(d/dt)C(t=0)=c and contains no information on the long-
(49). Unfortunately, the algebra becomes even more cumbetime behavior.
some and explicit evaluation of the self-energy matrices at  Given the analytical results for the Laplace transform of
higher and higher order becomes effectively impossible. Althe spin-autocorrelation function in the one-domékfq.
ternatively, one can resort to numerical approaches in whick35)] and two-domain representatioftsq. (52)] of the slow
the maximum domain sizk,, is fixed and all matrix inver- dynamics, explicit expressions fefc) can be obtained by
sions are carried out numerically. By monitoring conver-settingz=0 in the respective equations. For example, not

Noting that the Laplace transforé(z) of Eq. (56) is

(58)
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FIG. 4. Ratioo/ 7 of the width o of the relaxation-time distribution to the
average relaxation time as a function ofc in the one-domain and two-
domain bases.

FIG. 3. Logarithm(base 10 of average relaxation timefor various values
of c. The inset shows the same as a function of the logarithm(afso base
10) for the theoretical results, with slopes of —1,-3, and -4 showing their
scaling behavior.
as a function ofc. From this information, one can try to

including domains as in Eq47) gives7#®=1/c, while in the ~ attempt to establish a link between the distribution of relax-
one-domain basis, Eq&35) and (59) lead to the simple re- ation times as a function of temperature and the asymptotic

sult stretched exponential form, as suggested in Ref. 15. This
) may be an instructive way to examine the failure of the two-
l-c+c . . ;
A== = (60) domain basis to correctly predict the temperature dependence
c of the stretching exponer8. However, since analytical re-

sults are available for all quantities, it is desirable to obtain
_analytical expressions for such features as width or
pspreado of the relaxation times” as a function ofc. The
spread in7’ is defined by

in which the average relaxation time divergesca%as the
concentrationc approaches zero. Furthermore, in the two
domain representation, the average relaxation time is a co
plicated function ofc. In the limit thatc— 0, we find that
7@ ~c™. In Fig. 3, the theoretical predictions of the average

o= \/f p(7) (7 - n2d7.

relaxation time in the one-domain and two-domain basis sets (61)
are compared with numerically integrated simulation data.
Nole 1t 52 s evder fon Figs. 131 2 016 WOGOMNow one can use that 10l 01601
- ‘ I\ 2H R — _~r
still underestimate the relaxation time of the system at small Jp(r')7%dr .[Cf' Eq. (59] o write o {=c .(O)
values ofc. -[C(0)]3*2. Since we have obtained closed expressions for
From the relationship betweenand Bu in Eq. (2), itis ~ C(2), analytic expressions can be obtained &orFor ex-

clear that at low temperatures- exp(—-Bu). Since the loga- ample, using the one-domain basis set, we find that

rithm of the average relaxation time legs proportional to 1 c
log(1/c) for 79, 7Y and7?, a plot of logr vs Bu yields a sz C, (62
straight line in the smalt (low temperaturglimit. Thus we c

can conclude that the zero-, one-, and two-domain basis Sef, . o5 the expression fof? in the two-domain basis is a
all yield a relaxation time that diverges according to the

_ - : complicated function o€ [note: o'© is actually zerd. From
XO?]G:EFxlfhrir I?V;'Tr STXFE OC(IJ\InStL(Ih Ic;)r? W'trh altglarssin these analytical expressions foyone immediately sees that,
ansition temperaiure ofp=0. INote that these resufls arein ;,, fact, o diverges ag approaches zero in tlemmeway asr.
contrast with the exact result for the equilibration timeof

Hence a plot ofo/ 7 remains finite for all values of. Fur-
a system quenched t(; algvlegry Ipw_bu_t nonzero temperdture thermore, noting that in the one-domain basis,
where 7.~ exp(const/T%).”>~ This finding is somewhat sur-
prising given that the equilibration time was calculated in the 0.1 V1-¢
asymptotic smalkc regime using ideas of domain structure o= ——
rather similar to those presented here.

Given the relatively simple structure of the matéiXz), it is evident that lig_o o'/ #Y=1. Surprisingly, the same
it is easy to numerica”y examine many detailed features OﬁondUSion holds in the two-domain baSiS, as is evident from
the relaxation given a finite-domain basis set specified by-ig- 4. Note that at large values of 1, o~ 0 indicating that
setting a maximum domain sie,. For example, one can the relaxation is dominated by a single mode.
easily examine how the spectrum 6fdepends ort. At the We note that higher-order derivatives©fz) atz=0 can
same time, the actual distribution of tbhgcan be computed similarly be used to investigate further characteristics of the
numerically to see how many relaxation modes are relevanelaxation-time distribution such as the skewness and the

, 63
1-c+c? 63
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kurtosis. More generally, Eq(56) shows C(t) to be the
Laplace transform of the distribution of relaxation rates. If
r=1/r are the relaxation rates, then their distribution is
P(r)=r2p(1/r) and Eq.(56) can be written as

C(t) = Jm P(r)exp(-rt)dr. (64)
0

In this senseC(t) is the Laplace transform d®(r). Thus,
given C(t), one might expect to be able to use the numerical

Glassy dynamics and domains: Explicit results for the East model
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Laplace inverse of the Stehfest algorithm to obta{n). Un- 061 ok
fortunately it turns out that using Stehfest's numerical
Laplace inverse method o@(t), which was itself obtained

from C(z) by the same method, is unstable; it in fact yields 8

an incorrect result foP(r), namely, a highly oscillating func- 03 & 0
tion, which is not non-negative and not normalized to one.

Since the distribution of relaxation rates was considered herﬁG. 5. Higher-order correlation functions. Top: the non-Gaussian measure
mainly as an illustration of the power of the theoretical ap-A(t) defined in Eq(66). Bottom: the neighbor-pair autocorrelation function
proach presented in this paper, solving the numerical inStan_z(t)- In bo_th grqphs, the open circ_les and solid lines corresporitieio-
bility associated with applying the Stehfest algorithm twice©!¢3 andsimulationvalues, respectively.

and determining the distribution of relaxation rates in detail,
is left for future work.

20

O 04f

1
log(t)

The neighbor-pair autocorrelation function exhibits sev-
eral remarkable properties that are rather unlike those of the
spin-autocorrelation function. Note that in the short-time
limit t<1 the relaxation 065,4(t) is independenbf the equi-
librium up-spin concentration. This result can be explained

Given the glassy nature of the dynamics of the Easby examining a short-time expansitiarge z) of G,,, from
model, it is interesting to probe higher-order correlation\ynich it is seen thata(c,2) ~z+1 and henceézz~ 1/(z
functions to examine issues of cooperativity in the dynamics, 1), corresponding to simple exponential relaxatiégy(t)
and non-Gaussian statistics. In particular, one can look at the exp(-t). Effectively this approximation corresponds to the
neighbor-pair spin correlation function short-time  expansionGy,~ 1/[z—(0,(0)|£|04(0))]. Even

(AR (DA (0)A1(0)) = <é1(k;t)©1(k;0)>5k,0= Go(1), more remarkable is the clear emergence of a plateau in the
neighbor-pair autocorrelation function eslecreases and the

VI. HIGHER-ORDER CORRELATION FUNCTIONS

(65) P N ;
system becomes “glassy,” yielding a two-step relaxation-
and a related quantity time profile similar to that observed for the dynamic struc-
A a N N ture factor at microscopic length scales in simple glass-

A1) = Galt) = (A (OA(0)N s (D Prea(0) (66) bie o el

forming systems. In such systems, the onset of the plateau,
that examines the non-Gaussian nature of the normalizegienerally called thg regime, is relatively insensitive to tem-
spin fluctuation variablé;. Given the simplicity of the ma- perature and is often associated with the phenomenon of dy-
trix method, it is relatively straightforward to obtain analytic namic caging in dense fluid systems. In this regime, fluid
expressions for higher-order correlation functions such agarticles typically oscillate in the traps formed by their im-
Eqg. (65). For example, from the definition of the neighbor- mediate neighbors and little relaxation of the system occurs.
pair spin variable, which corresponds to the linear basis-sethis behavior typically continues until a typical time scale,
elementQ,(0), it follows that the Laplace transfor@,, of ~ known as thea regime, is reached in which particle cages
the functionG,(t) is the 2—2 element of the infinite matrix &ré temporarily broken. Thig time scale is strongly tem-

G, which, in the two-domain basis approximation, is giVenperature dependent and scales with the overall relaxation

by Eq.(50). Using standard matrix inversion methods, the o_time of the system. Interestingly, similar behavior is ob-

5 ol L ol® | served inG(Zzz)(t) of the East model: There is an initially rapid
element 0l 1S decay (with time scalet~1) at which point a plateau ap-

=2 _ 1 pears. The plateau typically extends to times corresponding
G5 = c(l-¢)’ to the average relaxation timeof the spin-autocorrelation
a(c,2) - 7+ e function. However, unlike simple liquid systems, theight

where a(c,z) is given in Eq.(53). In Fig. 5, the functions

of the plateau is strongly temperature dependent, occurring
roughly at value ot. In the East model, one can interpret the

G,,(t) andA(t) are plotted versus time for various values of emergence of the plateau as arising from a kind of effective
¢ (using Stehfest’s algorithm for the inverse Laplace transdynamic caging of the pair spin variabien;,, that occurs
form). Note that the agreement between the theoretical prewhenn;;;=1. When the right neighbor of a given spins
dictions and the simulation data is excellent for all times forup, the spinn; can oscillate between values of 1 and 0 for

all but the smallest value=0.2.

extended periods of time, corresponding to a kind of vibra-
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tion in a cage. This behavior will persist until the spinl  tion, one only limits how many simultaneous domains are
flips, which typically will occur at timed~ 7. Furthermore, included without restricting the possible sizes of those do-
the probability of finding such a caged system scales with thenains. When we restricted ourselves to a single-domain de-
likelihood of finding an up spin in equilibriunt,. scription, an explicit result for the single-spin time correla-
The two-step relaxation 06,,(t) was also found nu- tion function C(t)[CY] was obtained which gives a good
merically by Wu and Ca (who refer to this quantity as guantitative description foc larger than about 0.5. An ex-
C,). Wu and Cao showed that the relaxation can be describegnsion including neighboring domains led to an explicit ex-
with a stretched exponential behavior at long times. From th@ression[C®] which described the slow, glassy behavior
numerical analysis of our theoretical expressions, we findorrectly down toc=0.3. A general procedure was outlined
that the parameter-fretheoretical relaxation profile is also to obtain further approximations.
well described by a stretched exponential with the same The main advantages of our approach over others are
stretching exponentigB~0.6 found in the analysis of the that (a) it gives explicit analytical results without fitting pa-
spin-autocorrelation functio(t). rameters(b) it requires neither an arbitrary closure for the
As can be seen from Fig. 5, the spin fluctuationslo  memory kernel nor the construction of an irreducible
not behave as Gaussian random variables at all time scal@semory kernel such as in mode-coupling theories, émd
and for all values of, unlike their counterpart, the Fourier nonetheless, it describes lambehavior equally well as these
components of the mass density, in simple liquid systems. linode-coupling theories. The explanation for this power is
can also be observed that the decay of the spin fluctuations {gat domains of all sizes are included.
slower than that predicted for a system exhibiting Gaussian  while it is true that there is some arbitrariness to where
statistics for all times at high values of As ¢ drops below  one truncates the domain basis, i.e., how many simultaneous
0.5, the decay becomdasterthan Gaussian at short times domains of arbitrary size one wishes to consider, if a certain
but slower than Gaussian at long times. The fact .5  |evel of truncation does not suffice, one can in principle im-
is special can be seen from a short-time expansiof (ot prove the situation by going to the next level. Such a sys-
_ A ~ A ~ tematic improvement is not always possible in the kinds of
A =(Qu(0)[e]Qu(0)) - (Qole|Qo)* ansatz used in mode-coupling theories.

- - 2 A At a given level of truncation, the matrix approach out-

=1 +t<Q1(O)|[’|Q1(O)>+E<Q1(o)|£ Q10 lined here allows analytical results for the spin-
) ) autocorrelation function to be obtained. Armed with these
- [1+t<éo|£2|éo>+ t_<(‘30|£2|(?0>] +0O(t9). results, it is possible to assess the effect of truncation the
2 multidomain basis by evaluating approximate expressions

for the “self-energy” terms, as was done in Sec. IV. One can

then examine the time scale at which the higher domain cor-

rections become important and their magnitude for a given

A(t) = (2¢ - 1){1 —(2c+ 1)1} +08), (69) value of_c. Such_infogrfpzation is useful in examining dynami-
2 cal scaling relation&”

The matrix approach is also well-suited for examining
higher-order correlation functions, such as the neighbor-pair
autocorrelation function, that probe detailed aspects of the
dynamics, as was shown in Sec. VI.

Our theory does not require an ansatz for a closure rela-
between the memory kernel and the correlation function,
yet it does have thestructure of a mode-coupling theory.
First of all, the theory, derived using a projection operator
formalism, yields a basis set very similar to the multilinear

In this paper, the East model—a linear kinetically con-set in the theory of Oppenheim and co-workers. Second, suc-
strained spin model which is statically structureless—wasessive truncations of the set are like including only linear
studied theoretically taking the domains of down spins as anodes, or also bilinear modes, or also trilinear ones, etc.,
starting point. The constraints in the model lead to a veryagain very similar to mode-coupling theories for fluids. Fi-
slow spin relaxation for low up-spin densitybecause of the nally and perhaps most strikingly, without assuming a clo-
existence of these down-spin domains, of which each spisure relation, a self-consistent equation emerges for part of
has to flip at least once before a spin on the left of thethe result, i.e., foR'Y) in Eq. (33) of Sec. IV A and for3? in
domain can relax. Such highly cooperative, hierarchicaEq. (54) of Sec. IV B. Thus, in a sense, the correct closure
events driving the relaxation mimic heterogeneous behaviorelation follows unambiguously from the theory rather than
in glasses. being assumed. Perhaps this is an indication why mode-

The way the down-spin domains were taken into accountoupling theories can work, at least in some range, dfthe
was by using them in the construction of a basis which isclosure relation is well chosen. However, as the difference
complete on the relevant ergodic component. In the completbetween the closure fo§Y and 32 shows, the required
domain basis, the theory is formally exact, but the basislosure depends on how lowis. The closure can also be-
needs to be truncated to get explicit results. In this truncacome “hierarchical,” in the sense tha? depends orip,,

Using the rules elaborated in Sec. IV A, all quantities appear
ing above are easily evaluated to reveal the exact result:

from which the sign change fa=0.5 is explicitly evident at
short times.

One can also note in Fig. 5 that the maximum positive
deviation from Gaussian behavi@re., slower than Gauss-
ian) occurs at a time which scales roughly with the average, -
relaxation timer.

VIl. DISCUSSION
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which itself satisfies a self-consistent equation. (36) into two-domain variables for which=0 and those for
A natural question is how adaptable is the matrix ap-which|,>0, by defining

proach outlined here for other conditions of spin facilitation,

such as the Frederickson—-Andersé(FA) model, higher di- R(K) = O, (k. 0) = (N = ©)D (KN 1(Nes2 = ©) (A1)

mensions, and other types of lattices. The extension to the 2 Z,(k,0) ’

FA model involves extending the one-domain basis set to

include domains orboth sides of the targeted spin and in-

volves slightly more complicated matrix algebra than that

é(|11|2):(:x)2(|1,|2"'|)

presented her& For the FA model for which self-consistent (No = €)D1 (1N 41Dy 4212+ 1)(Ny 41,43 =),
closure schemes in the context of mode-coupling theory ap- = Z 0+ 1
. 4 o 21+ 1)
pear to work quite welt’ quite good quantitative agreement
can be obtained with the simple single-domain basis set. Ex- (A2)

tensjons to include multiple domains can be carri.ed OUt U= iy My, then takes on the forMs,=[Mog, Mod,
merically for the FA model as well as other generic models, here

In addition, higher-dimensional models can also be tackled’
in a numerical fashion using finite basis-set representations,
provided the basis sets include domains that are sufficiently
large. Although finite matrix representations are always A A
bound to give the incorrect long-time asymptotic behavior MQS:<Q1|£|S>, (A4)
for systems exhibiting stretched-exponential profiles, the

short- and intermediate-time behavior can be reproduce@ndMy; is written in the block form

Mgr= <(A31|£||23>y (A3)

with great accuracy.
It is conceivable that the complete basis set presented in  \,_ — {MRR MRS} (A5)
Sec. IV B has a deeper structure that could be exploited for MES Mss /|’
the description forc— 0. Also, the domain basis might be
used to describe the response of the East model to a sudd¥€r€Mrr,Mrs andMssare
“quench” to low c values. Work on these issues is in Al A
progress. MRR: <R|£|R>- (A6)
Finally, our approach shows how important it isfist
identify the “slow modes” of a system, in this case the down-  \1. = (R£|9), (A7)
spin domainsbeforeembarking on a mode-coupling-like de-
scription of the long-time behavior of correlation functions. A
Mss=(SL[9), (A8)
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S.oo= - _ MrdVgs T
APPENDIX: SELF-ENERGY MATRIX IN THE 2= MQR[Z] Mrr= MSJ Mor
TWO-DOMAIN BASIS
. . MorMor

From the expression for the self-energy matrix in the = Mo (A10)

two-domain approximation, 71 = Moo— rRMrs
RR
+ ﬂ - MSS
< _ MMy, F ; i
Zn(2 =~ 21— Mo M., The explicit calculation of all the matrix elements ap-

pearing in Eq(A10) proceeds as follows: We start withog
it is clear that we must evaluate matrices such Mﬁ defined in Eq(AS) Combining the expressions ﬁQl(k) in

=(Qu(|£]Qx(11.1)). The double indices 0@y(I1.I,) tend to  Eqs. (24b) and (240 with that of R(k')=O,(k',0) in Eq.
make the algebra somewhat less transparent than in Seq\1) yields
IV A, and it turns out that the self-energy matrix can be

evaluated more easily by splitting up the §gtgiven in Eq. (Qu(K)|L|R(K= 1)) = (1 - ¢)3%c12,
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(Qu(K)|£|RK) = - (1 - c)ct?,

while all other(él(k)|£|ﬁ2(k’)> are zero. By similar means,
one finds(é(ll,I2)|£|Ql(k)>:0—so thatMqgs in Eq. (A4) is
indeed zero as we anticipated above. Alé%(k)|£|(§o)
=(S(4,1,)|£|Qu)=0, confirming thaM,=0. Using Eq.(A3)
gives
-1-0c*? 0

Mor=| (1-c)¥%c> - (A11)

Next we will determineMigg defined in(A6). For this we
needLR(Kk):

LR(0) = 2”2‘2(; f)) [ ny(n, - O - (1 -0 (ny - Ony
—ny(ny—0)], (A12)
LRKk=1)= ano(lzg)[_ D1(K)Nis1(Nis2 = ©)Niea3
— (1 =¢)D1(K) (N1 — ©)Niyp + Dy (k— 1)
X (Mg = )Ny a(Nis = ©) 1. (A13)

Combining these expressions with thosef?d{’) in Eq. (A1)
yields

[Mrrlke = = (2 =€+ €) b — (1 +€) (1 = o) Sk -
(A14)

Next to determine i8l1gr5 Combining the expressions for
Sin Eqg. (A2) with those of£Rn Egs.(A12) and(A13), we
see that many elements bfyg are zero, while the nonzero
ones are restricted to

[Mrl,1, = €(1 = ¢)*28 8. 0- (A15)
The final matrix to determine iMgg for which we re-
quire LS14,15):
Ng—C
Z5(0,1,+1)

+ (1 =c)nyDy(I12) (N2 = €Ny g

£S(0l) = [= D2+ (13- )

= MDy(l2 + 1) (N3 = C)Npal,

ﬁé“l? 1.1,
__ No~
 Zy(Ig, 1+ D)

Xy, =)y 41Dy 4ol + 1)(N) 41,43 =€)

[Da(li-1)

+(1 _C)Dl(l1)n|1+1DIl+2(|2)(n|l+|2+2 - C)ﬂ|1+|2+3
= Da(l)ny 11Dy 212+ DN 1,43 = CNY 4 ral-

Combining with the expression f@ from in Eq. (A2), one
finds

J. Chem. Phys. 122, 194502 (2005)

[Msdli 1,101 = 61,81y,
- 8iy,8,0(1 +2c-c?)
=4y, (1= 8,0cB-0)].

In view of Egs.(A10) and(A15), we need thé,=0 and
[,=0 components of the inverse af—~Mgg This matrix is
diagonal inl; andl; and tridiagonal in, andl; for fixed I,
andl;. Thus, we can use E30) to write

s+ 8,01 -0)t?

(A16)

_ do 1-dp
(21 -Msd oy 0= 5= + == (A17)
a—e; Qe
where
ay=z+1+2-c? (A18a)
a,=z+c(3-0), (A18b)

andz,; andz, result from the repeating part of the continued
fraction that results from applying E¢B0). Similar toyV) in
Eqg. (33) in Sec. IV A, they satisfy

Ej = C2(1 _C)/(éj _Ej) .

With the requirement that they go asZzlfor large z, the
solutions are

5 =50 - (A20)

The subexpressioMzd z1 —Msg M/, in Eq. (A10) now be-
comes, using EqA15) and (A17)—<A19).

[ MRévlTRs:|
Zl = Mss]e
Since this matrix andMgg in Eq. (Al4) are diagonal, the

inverse of(zl —~Mgg—Mgdzl —-Msd ™ML is simply
MRd\ALST

Zﬂ - MSS Kk’

(A19)

& - 4c’(1-0)].

= Sue[E16k0 + E2(1 = Si0) ] (A21)

{Z}l - Mgr—

B S0k (1 = &) e
Z+2-c+c?-%, z+1+c*-%,

1-bo

1-2c+c%z, |

_ O S0 .
1-c|1-2c+cz,

where in the last equality we used again E419). Given
this last form, we can shorten many equations by using the
expression?;=c(1-c)/(1-2c+c?/%;), which is explicitly
given by

~ c(l-c)

n = 2C2 ’ (A22)

1-2c+
F - V& - 4c%(1-c)

and in terms of which we have

B[+ a1 - o)
c(l-c¢)?

Inserting this result in the expression for the self-energy ma-
trix in Eqg. (A10), one obtains the result presented in E#$).
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