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The theoretical framework for higher-order correlation functions involving multiple times and multiple points
in a classical, many-body system developed by Van Zon and Schofield [Phys. ReV. E 2002, 65, 011106] is
extended here to include tagged particle densities. Such densities have found an intriguing application as
proposed measures of dynamical heterogeneities in structural glasses. The theoretical formalism is based
upon projection operator techniques which are used to isolate the slow time evolution of dynamical variables
by expanding the slowly evolving component of arbitrary variables in an infinite basis composed of the
products of slow variables of the system. The resulting formally exact mode-coupling expressions for multiple-
point and multiple-time correlation functions are made tractable by applying the so-calledN-ordering method.
This theory is used to derive for moderate densities the leading mode coupling expressions for indicators of
relaxation type and domain relaxation, which use dynamical filters that lead to multiple-time correlations of
a tagged particle density. The mode coupling expressions for higher order correlation functions are also
successfully tested against simulations of a hard sphere fluid at relatively low density.

I. Introduction

A complete understanding of the physical processes underly-
ing the transition between the high-temperature exponential
relaxation of density fluctuations of a fluid and the nonexpo-
nential relaxational profiles observed at lower temperatures,
especially near the glass transition, remains elusive. A number
of interesting features have been noted in dense, supercooled
systems from computer simulation studies1-7 as well as
multidimensional NMR8,9 and video microscopy experiments10,11

that appear to be related to this crossover from simple
exponential to multiexponential or stretched exponential relax-
ation: One typical feature of such systems is the appearance of
heterogeneously distributed regions of the fluid which differ
dramatically in their mobility and local density. While fluid
motions are relatively unrestricted in regions of low density,
structural rearrangements in regions of high local density at a
given time have been observed to occur through relatively rapid,
collective stringlike motions.1 Furthermore, regions which at
one time were of relatively low density and in which particle
motions were primarily fluidlike can become locally dense and
immobile.

It is well-known that a variety of different mechanisms are
consistent with nonexponential relaxation and that this relaxation
is somehow related to the heterogeneous nature of the dense
fluid. In one possible scenario of nonexponential relaxation,
fluctuations of local density relax in the same intrinsically
nonexponential way, where the cooperative motion of particles
depends strongly on the local environment and is correlated over
a long time period or “history”. Another possible mechanism
is that each region of the fluid rearranges in a less strongly

correlated fashion, but with different rates, so that the observed
nonexponentiality is a consequence of the superposition of
different exponential relaxation processes. Of course neither
scenario may apply over all time scales and the mechanism may
shift from one that is primarily homogeneous to one that is
primarily heterogeneous. It is equally possible that one type of
relaxation may not even predominate over another.

To distinguish between these scenarios, it is helpful to
construct quantitative measures which unambiguously signal the
presence of a specific mechanism. Such constructions can be
based on filters4,12-14 that select out subensembles of particles
to have specific dynamical properties over a sampling period.
A simple example of such a filter is one that selects out
individual particles that move either more or less than a critical
distance over a fixed period of time. One can then examine
time correlations within these subensembles to gain new insight
into detailed features of the dynamics. When time-filters are
utilized in this fashion, time correlation functions of particles
contained in the subensemble necessarily involve multiple-time
intervals. Filters based on single-particle properties then can
be expressed as multiple-time correlation functions of tagged
particle densities.

Given this interesting application of multiple-time correlation
functions, the need for a theory that enables one to calculate
such quantities from first principles is clear. In ref 15, such a
theory was developed based on mode-coupling theory for
multiple-time correlation functions of collective densities (i.e.,
particle number, momentum and energy densities). The theory
was tested successfully on a hard sphere gas at moderate
densities in the hydrodynamic limit where the relevance of
mode-coupling theory is well-established. In this article, the
theory is extended to include multiple-time correlation functions
of arbitrary type, encompassing correlation functions involving
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only tagged densities or only collective densities as well as any
combination of the two types.

The paper is organized as follows: The mode-coupling
formalism of multiple-time correlation functions is introduced
in section II based on projection operator methods, and equations
describing the evolution of multiple-point densities of arbitrary
type are obtained. These equations are manipulated to yield
expressions for correlation functions of multiple-time intervals
that are local in all time arguments. In section III, a systematic
method of determining what types of contributions are the most
significant for a particular multiple-time interval correlation
function of tagged particle densities is introduced and the
leading-order expressions for two- and three-time interval
correlations of a tagged particle density are presented. In section
IV, specific applications of multiple-time correlation functions
of tagged particle densities are examined. In particular, direct
measures of relaxation type and of the rate at which solidlike
domains become fluidized are analyzed and leading order mode-
coupling expressions for these measures are obtained. Section
IV concludes with a numerical comparison of the leading order
theoretical predictions with direct simulation results for a low
density, hard sphere system in the hydrodynamic limit, and
section V contains a summary.

II. Mode-Coupling Formalism

A. Slow Variables.The basic assumption of mode-coupling
theory is that the long time behavior of all time correlations
functions can be completely expressed in terms of the evolution
of a set of slow modes of the system. Although the theory does
not specify the identity of the slow modes, physical arguments
can often serve as a guide to define a finite set of variables that
serve as a dynamical basis for the long time evolution. For
example, since the particle number, the momentum, and the total
energy of a fluid of structureless particles are constants of
motion, a minimal basis set for the slow evolution of the system
must include the long wavelength modes of densities of these
quantities.

Once the slow basis set has been determined, the slow
component of an arbitrary dynamical quantity can be extracted
by finding the projection of the variable onto the subspace
spanned by the set of slow variables. Similarly, projecting the
variable onto the complement of this subspace should yield a
fast quantity.

Projection operators are linear operators, and hence only the
linear dependence of a dynamical variable on the slow variables
can be projected out by such a procedure. In general, however,
one expects the time dependence of most dynamical variables
to be anonlinear function of the slow variables. This nonlin-
earity can be incorporated into the theory by constructing the
slow subspace to include the space spanned by all powers of
the slow variables. In this way, an analytic dependence of the
slowly evolving component of a dynamical variable on the slow
variables can be described. The basis of the slow subspace is
referred to as the multilinear basis.

Consider an equilibrium system composed ofN particles that
is described by a translationally invariant HamiltonianH. The
time evolution of any quantity (phase space function)C is given
by

with L the Liouvillian operator, which is the Poisson bracket
with the Hamiltonian.

To describe the slow evolution of dynamical variables within
the projection operator formalism, the slow variables of the

system are taken together in a single vectorB. As mentioned
above, for a structureless fluid, these are typically the number
density, the momentum density, and the energy density:

Here, rn(t) is the position of particlen at time t, pn(t) is its
momentum anden(t) its energy (kinetic and potential). It will
be convenient to work in Fourier space:

wherebn(t) ) (1, pn(t), en(t)).
Since the goal of the mode-coupling theory outlined here is

to describe the time correlation functions of single particles,
slow tagged particle densities must be included, i.e.

where particle 1 is the tagged particle. In the Fourier representa-
tion, the tagged particle number density is simply

The tagged particle density is taken together withB(k) into a
larger vectorA(k). Henceforth, components ofA will be denoted
with a superscripts when referring tosingle particledensities
(which have no summation over particles in their definition)
and with a superscriptc when involvingcollectiVe densities
(which have a summation over all particles in their definition).

We require that the slow subspace be spanned by all powers
of the slow variables. Since the productN1(k)N1(q) ) N1(k +
q) is just a linear variable, beyond the linear level only products
of B are relevant. Furthermore, to accommodate correlation
functions of certain fast variables one might be interested in
(e.g., P1(k) ) p1(t)eik‚r1(t)), A′(k) is defined as the vector
composed of all linear slow variables plus any fast variables of
interest.

It will prove to be convenient to construct a basis set that is
orthogonal in the number of factors of the linear setA andB,
which is guaranteed by the definition

Here the following notation has been used:
• 〈‚‚‚〉 denotes the (grand canonical) equilibrium ensemble

average, which is used to define the inner product.
• A superscript “/” defines complex conjugation.

Ċ(t) ) LC(t) (1)

B(r , t) ) (N(r , t)
P(r , t)
E(r , t) ) ) (∑n)1

N

δ(r - rn(t))

∑
n)1

N

pn(t)δ(r - rn(t))

∑
n)1

N

en(t)δ(r - rn(t))
)

B(k, t) ) ∑
n)1

N

eik·rn(t)bn(t) (2)

N1(r , t) ) δ(r - r1(t))

N1(k) ) eik·r1(t) (3)

Q0 ≡ 1

Q1(k) ≡ A′(k) - 〈A′(k)〉 ) Â′(k)

Q2(k1, k2) ≡ Â(k1)B̂(k2)

- ∑
|R|)0

1

〈Â(k1)B̂(k2) QR
/〉 / KRR̂

-1
/ QR̂

l
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• A Greek lower case letter denotes a set of pairs, each pair
containing a component index and a wave vector.

• |R| denotes the number of pairs in the setR, the so-called
mode order.

• A hatted Greek letter has the same mode order as its
unhatted variant but is otherwise unrelated.

• QR is the same asQ|R|(k1, ..., k|R|). Also, in the rest of the
paper, the short hand notation of a numbern instead of a Greek
letter will often be used to indicate a set of mode order is n.

• The “/” product involves a summation over the pairs of
wave vectors and indices inR, divided by all ways in which
these pairs can be permuted, so as to avoid overcounting. Also,
for this summation to always be well-defined, the wave vectors
will be summed up to a cutoffkc, thus includingM ) O(N)
wave vectors.

• By definition, KRâ ≡ 〈QR Qâ
/〉, while K-1 is the inverse of

this object with respect to the “/” product.
As the definition ofQn containsKmm for all m < n, which

are defined using theQm<n, the above definition of the
multilinear basis is really recursive. Note that asKnm ) 0 if n
* m, the above set is orthogonal in mode order:Knm ) 〈QnQm〉
) 0 unlessn ) m.

We note also thatN̂1(k)0) ) (exp[ik‚r1] - δk0)|k)0 ) 0.
This implies that〈N̂1(0, t)N̂1

/(0)〉 ) 0 and, more importantly,
that the elementsQR which have aN1 component with zero
wave vector have to be omitted from the set to avoid an
overcomplete basis.

B. Single Time Interval Correlations. Let all time correla-
tion functions of the slow (linear) variables be taken together
into the matrix

Note thatG11 is wave vector dependent, but that this is not
explicitly denoted here.

To make contact with other versions of mode-coupling theory,
we first examine the consequences of taking only the linear basis
Q1 into account. The time evolution ofQ1 is given by eq 1. In
differential form, this means

Defining the linear projection operator

and its complementP1
⊥ ≡ 1 - P1, and using a well-known

operator identity, eq 5 can be cast in the form of a generalized
Langevin equation

in which a fluctuating force æ̃1(t) ≡ eP1
⊥
Lt

P1
⊥
L Q1, a static

Vertex M11
E ≡ 〈{L Q1} Q1

/〉 / K11
-1, and amemory kernel M˜ 11(t)

≡ - 〈æ̃1(t) æ̃1
/〉 / K11

-1 appear. By taking the inner product
with Q1, eq 6 yields

It should be noted that because of translational symmetry,
the sum of wave vectors in an average has to add up to zero.
Thus, G11 involves only one wave vector, instead of two.
Likewise, the above equation is an equation involving just one
wave vector. In this sense, there is no mode-coupling in the

above equation, although, of course, the different components
of Q1 are coupled.

The memory kernelM̃11(t) involves the time correlation of
the fluctuating forceæ̃1, for which the formalism as presented
thus far provides no method of evaluating. However, provided
P1

⊥ projects out all the slow behavior ofæ(t), 〈æ̃1(t) æ̃1
/〉, which

contains dynamics orthogonal toÂ only, should be a quickly
decaying function that is well-approximated at long timest .
tm by M̃11(t) ≈ 2Dδ(t), for some microscopic timetm on the
order of the particle-particle collision time. Under such
circumstances, eq 7 is local in time, i.e.,Ġ11(t) ) (M11

E + D) /
G11(t). Unfortunately, in most cases, the correlation function of
the dissipative forceæ̃1(t) is not a quickly decaying function
but instead has long time tails16-18 due to the fact that the linear
projection operatorP1

⊥ does not remove the nonlinear depen-
dence ofæ̃(t) on the set of slow variablesB̂. Hence, one is forced
to use the full multilinear basis if equations of motion are to be
local in time.

In the following, Q will denote the vector composed of all
QR. As Q is still a phase space function, its time evolution is
governed by

Using the multilinear projection operator

(where the “/” now also denotes a sum over mode orders) and
its complementP⊥ ≡ 1 - P, an equation analogous to eq 7 is
found

whereG(t) is the full propagator defined by

the fluctuating force is defined by

and the vertexesME andMD(t) are given by

Note that the original goal of evaluatingG11(t) now becomes
to calculate the 1-1 (or linear-linear) sub-block ofG(t) while
G0R(t) ) GR0(t) ) δR0 is trivial.

Now that all powers ofB̂ are projected out of the dynamics,
one expectsæ to be truly fast, and its correlation function to be
approximately aδ function. Defining the dissipative vertex as

and the full vertex to be

we can write

as an approximation to eq 8.

Q̇(t) ) L Q(t)

PC ≡ 〈C Q* 〉 / K-1
/ Q

Ġ(t) ) ME
/ G(t) + ∫0

t
MD(t - τ) / G(τ) dτ (8)

G(t) ≡ 〈Q(t) Q* 〉 / K-1 (9)

æ(t) ≡ eP⊥Lt
P

⊥
L Q (10)

ME ) 〈{L Q}Q* 〉 / K-1

MD(t) ) -〈æ(t) æ* 〉 / K-1

MD ≡ ∫0

∞
MD(t) dt

M ≡ ME + MD (11)

Ġ(t) ) M / G(t) (12)

G11(t) ) 〈Q1(t) Q1
/〉 / K11

-1 (4)

Q̇1(t) ) L Q1(t) ) eLt
L Q1 (5)

P1C ≡ 〈C Q1
/〉 / K11

-1
/ Q1

Q̇1(t) ) M11
E
/ Q1(t) + ∫0

t
M̃11(t - τ) / Q1(τ) dτ + æ̃1(t)

(6)

Ġ11(t) ) M11
E
/ G11(t) + ∫0

t
M̃11(t - τ) / G11(τ) dτ (7)
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A physical note is in order here: it is assumed that there is
a separation of time scales, such that there are fast correlations
which decay on the short microscopic scaletm, while the
interesting long time behavior occurs on slow, “hydrodynamic”
scalesth, and we assumetm , th. Equation 12 describes just
the slow part, so it is valid only after a time (much) larger than
tm with corrections of orderO(tm/th).

It is useful to perform a Laplace transform:

With the initial conditionGRâ(t)0) ) 1Râ (the unit matrix in
infinite dimensions), eq 12 can be solved formally in Laplace
space,

where the inverse is to be taken with respect to the “/” product.
By splitting up the matrixMRâ into its part diagonal in wave
vectorsMd (i.e., the wave vectors inR andâ are pairwise equal)
and an off-diagonal remainder,Mo ) M - Md, one can write

where the bare, mode-order diagonal propagatorGb is defined
as

Because the wave vectors inR andâ have to pair up inMRâ
d ,

the numbers of wave vectors|R| and |â| need to be equal as
well, i.e.,Md andGd are also diagonal in mode order.Gb(z) at
a particular mode-ordern is denoted asGn

b(z).
The inverse in eq 13 can be expanded to yield

The 1-1 element ofG(z) can be written in terms of aself-
energythat is defined as

Note that the summations start at mode-order 2. After re-
summing eq 15,G11(z) is related toΣ(z) by

This result can be compared to the solution in Laplace space of
eq 7,G11(t) ) [z - M11

E - M̃(z)]-1. Thus, the self-energy is
related to the memory kernel by

Since M11
D is short-lived, the long time tails of the memory

function are due to mode-coupling effects inΣ(z).
It was shown by Schofield and Oppenheim19 that in the

thermodynamic limit, the series for the self-energy forΣ can
be re-summed, with the result that all bare propagators in eq
15 are replaced by propagators that are completely diagonal in
wave vector, but with the restriction of the sum over intermediate

wave vector sets that none of them should be equal. In the same
paper, it was shown that that these full diagonal multilinear
propagators factor in the thermodynamic limit into products of
full linear-linear propagators. As a result, eqs 15 and 16
combine to a self-consistent equation forG11(z). It should be
noted that although the formalism assumes the diagonal mode
orderandwave vector multiple-point correlation functions factor
into products of full linear-linear correlation functions, this
factorization is not equivalent to assuming that the basis set
variables behave as Gaussian random variables. The factoriza-
tion here occurs only for fully “diagonal” wave vector indices,
and off-diagonal components of a multiple-point functions are
included through mode-coupling expressions. For example, the
off-diagonal part ofG22(k - q, q;k - q′, q′;t) with q * q′ and
k - q * q′ is represented by the series in Laplace space

It can be shown that corrections to the factorization of the fully
diagonal multiple-point correlation functions vanish in the
thermodynamic limit provided the (time-dependent) dynamical
correlation length is nonextensive. These results rely on the
N-ordering technique, which will be discussed in detail in section
III.

C. Multiple-Point Correlations. In ref 15, the functionsGRâ-
(t) with either|R| or |â| bigger than one were called multiple-
point correlation functions because they can be seen as Fourier
transforms of correlation function of densities involving more
than one relative position. Note that if|R| ) |â| and the wave
vectors inR andâ are fully (pairwise) matched,GRâ is the full
propagator at mode-order|R|, and this propagator can be written
as a product of full-linear propagators to an excellent ap-
proximation. However, even when the wave vectors are not fully
matched,GRâ is still an interesting but nontrivial quantity.

The expression for the multiple-point correlation functions
follows from the general form in eq 14. The form of the equation
is identical to the case of just collective densities that was treated
in ref 15 (section II.D). By performing the same re-summations,
which rely on theN-ordering method to be discussed shortly,
one obtains the result of eq 26 of that paper:

Here, primed Greek indices have the same wave vectors as their
unprimed variants, but not necessarily the same component
indices, i.e., they are fully diagonal in wave vector. Thus,
GRR′δR′â denotes the full diagonal in wave vector of the
propagator at mode-order|R|. Furthermore, there is a restriction
on the summation that none of the intermediate wave vector
sets are equal, which in contrast to the notation in ref 15 is not
denoted explicitly here.

Equation 19 expresses the multiple-point correlation function
in terms of the full propagators, which can be expressed in terms
of the full linear-linear propagators. By usingN-ordering (see
section III), one can show that contributions in eq 19 involving
Gn(z) with n < |R| and n < |â| are negligible in the
thermodynamic limit.

D. Multiple-Time Correlations. The results above consider
only correlation functions that contain a single time interval.
However, the case of correlation functions of several time

G(z) ) ∫0

∞
e-ztG(t) dt

G(z) ) [z - M]-1

G(z) ) [z - Md - Mo]-1 ) Gb(z) / [1 - MoGb(z)]-1 (13)

Gb(z) ≡ [z - Md]-1

G(z) ) Gb(z) + Gb(z) / Mo
/ Gb(z) +

Gb(z) / Mo
/ Gb(z) / Mo

/ Gb(z) + ... (14)

Σ(z) ≡ ∑
n)2

∞

M1n
o
/ Gn

b(z) / Mn1
o +

∑
n)2

∞

∑
m)2

∞

M1n
o
/ Gn

b(z) / Mnm
o

/ Gm
b (z) / Mm1

o + ... (15)

G11(z) ) [z - M11 - Σ(z)]-1 (16)

M̃(z) ) M11
D + Σ(z) (17)

G22(k - q, q;k - q′, q′, z) ) G22
d (k - q, q;z)M22

o (k -

q, q;k - q′, q′)G22
d (k - q′, q′, z) + ... (18)

GRâ ) GRR′δR′â + GRR′ / MR′â′
o

/ Gâ′â +

GRR′ / MR′δ
o

/ Gδδ′ / Mδ′â′
o

/ Gâ′â + ... (19)
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intervals, which in general will be denoted (following ref 15)
by G1Rn,Rn-,...,R0

(n) (tn, tn-1, ..., t1) or

is of considerable interest.
Even very straightforward approaches to multiple-time cor-

relation functions lead to expressions involving multiple-time
correlations of the fluctuating force. Such correlation functions
are generally nontrivial as they are not always fast decaying.20

The essential ingredient in deriving mode-coupling expressions
for multiple-time correlation functions, as remarked in ref 15,
is that “in a correlation function inVolVing fluctuating forces,
the function decays quickly in a pair of time arguments, proVided
these are well-separated in time.” Here, “well-separated” means
having a time separation much larger than the microscopic time
scaletm on which 〈æ(t) æ* 〉 decays. For correlation functions
of collective densities, this argument led to the conclusion that
a correlation function involving several time argumentsti whose
time evolution arises through the fast evolution operators exp-
[P⊥Lti] can be considered fast-decaying in each of the timesti
provided all times are positive, larger thantm, and the evolution
operators are applied in succession. When these properties hold,
all effective times (such ast1, t1 + t2, t1 + t2 + t3, etc.) are
well-separated and the quoted criterion applies.

On a formal level, the arguments invoked in ref 15 to derive
expressions for multiple-time correlation functions of collective
densities apply equally well when tagged particle densities are
included in the slow basis set. Thus, by using projection operator
techniques, the following relation can be established:

where

In the limit of long times whereτ1 . tm, the fast term can be
neglected and the integrand can be replaced by aδ function
according to the above criterion, yielding an equation that is
local in tn

whereMh δRθ ) ∫0
∞ dτ1 ∫0

∞ dτ MδRθ(τ, τ1). Different from the
single time correlations of sections IIB and IIC, where including
Q0 was of little practical consequence, for the multiple-time
correlations here it may happen that|â| or |δ| is zero. For these
special cases,Mh âRδ are given byMh âR0 ) KâR/ andMh 0Rδ ) 1Rδ.

The recursion relation in eq 21 can be applied as many times
as necessary to yield a relation betweenG(n) and G(1). For
instance, forn ) 2 andn ) 3:

III. N-Ordering Scheme for Tagged and Mixed
Correlations

To make the infinite series such as in eq 15 or in eq 21
tractable, one must develop a systematic scheme for analyzing

the relative importance of terms appearing in the series. In such
an approach, the series must be analyzed so that simple but
accurate approximations for the entire series can be formulated
in a (preferably) controlled fashion. TheN-ordering method,
developed by Oppenheim and co-workers21,22 as an extension
of Van Kampen’s system size expansion,23 allows such an
approach for correlation functions on the hydrodynamic length
scale in systems of moderate density removed from any critical
point. In theN-ordering approach, one assigns a factor ofN
(the number or average number of particles) to any cumulant
of multilinear densities based on the assumption that the each
cumulant containingn linear densities scales with the system
size asN(ê/a)3(n-1), whereê is the correlation length of the
system anda is the average distance between particles. As
shown in ref 19, theN-order of an arbitrary correlation function
of basis functionsKR̂R ) 〈QR̂QR〉 depends on the nature of the
densities and the number of matched wave vectors in the sets
R and R̂. The subscripts like

denote sets of wave vector-dependent densities, where eachBi

is a component of the set of collective slow variable defined in
eq 2 andAi is a component of the extended linear basis setA.
If the componentA1 in the setR is a single particle density, we
denote the corresponding multilinear density by a superscript
s, QR

s ; if this component is a collective density, then the
dynamical variable is represented byQR

c . In ref 19, it was
demonstrated that the leadingN-order terms arise from matching
as many wave vectors as possible in the setsR andR̂, yielding
the following estimates forKR̂R,

where for example, the superscript “ss” denotes that both sets
R̂ andR contain a single particle density. More importantly, it
was also demonstrated that theN-order ofKR̂R

ss ∼ N|R|-1 only
when the single particle densities are in the same matched set,
and theN-order drops by a factor ofN when the wave vectors
of the single particle densities do not match.

For the inverse ofK, theN ordering in eq 23 implies

When considering theN order of an expression that contains
the “/” product, one needs to separately consider its order in
M (the number of wave vectors summed over, see the seventh
point at the end of section IIA). That is, when the “/” product
is between multiindices of ordern, one has in principlen - 1
sums over wave vectors and thus an effective factor ofMn-1

(one loses one sum over a wave vector because by translation
symmetry all wave vectors have to add up to zero inside an
average). AlthoughM is of order N, these orders ofM are
counted separately from theN ordering, for the following good
reason: For fluids of moderate density only a small fraction of
the wave vectors in the sums really contributes significantly.
Therefore, rather than takingM as counting the precise number
of wave vectors summed over, it makes more sense to takeM
as the number of wave vectors that contribute substantially to
the sum. This results in a small value ofM [which is nonetheless
still O(N)]. TheO(1) parameterM/N is called the mode-coupling

G{Ri}
(n) ({ti}) ≡ 〈QR̂0

/ QRn
(t1 + ... + tn) ... QR1

(t1)〉 / KR̂0R0

-1

G{Ri}
(n) ({ti}) ) ∫0

tn-1∫0

tn GRnâ(tn - τ)MâRn-1δ(τ, τ1) ×
Gδ,Rn-2‚‚‚

(n-1) (tn-1 - τ1, tn-2, ...) dτ dτ1 + fast term intn-1

MâRδ(τ,τ1) ) 4〈QâQRQδ̂
/〉Kδ̂δ

-1δ(τ)δ(τ1) (20a)

-〈Q̇δ̂
/eP⊥Lτ1P⊥æâ(τ)QR〉Kδ̂δ

-1 (20b)

GRn,...
(n) (tn, ...) ) GRnâ(tn) / Mh âRn-1δ / Gδ,Rn-1,...

(n-1) (tn-1, ...) (21)

GRγâ
(2) (t2, t1) ) GRδ(t2) / Mh δγθ / Gθâ(t1)

GRâγδ
(3) (t3, t2, t1) ) GRú(t3) / Mh úâθ / Gθη(t2) / Mh ηγλ / Gλδ(t1)

(22)

R ) {A1(k - q1 - ... - q|R|-1), B1(q1), ...,B|R|-1(q|R| - 1)}

KR̂R
cc ∼ N|R| KR̂R

cs ∼ N|R|-1

KR̂R
sc ∼ N|R|-1 KR̂R

ss ∼ N|R|-1 (23)

(K-1)R̂R
cc ∼ N-|R| (K-1)R̂R

cs ∼ N-|R|

(K-1)R̂R
sc ∼ N-|R| (K-1)R̂R

ss ∼ N-|R|+1 (24)
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parameter. As stated, it is typically small (e.g., 10-5) for fluids
of moderate density and away from any critical point.

To illustrate this, consider for instanceK22̂
cc

/ K2̂2̂′
cc which is

seen to have anN-ordering of O(N4). There is a possible
summation overM wave vectors inK22̂

cc
/ K2̂2̂′

cc , but in fact the
leading order estimate ofO(N4) requires a matching of wave
vectors which gets rid of the factorM. As a result, the leading
term of K22̂

cc
/ K2̂2̂′

cc is just O(N4), with (possible) correction
terms of orderO(MN3), which compared to the leading term
are of relative orderM/N, i.e., of the mode coupling parameter.

In general, for any expression one can determine the values
of m andn such that it is of orderO(MmNn) ) O((M/N)mNn-m).
If m > n, such an expression vanishes in the thermodynamic
limit N f ∞. Below, when adding expressions of differentM
and N order, expressions which vanish (relatively) in the
thermodynamic limit will be omitted. The remaining terms with
the smallest power ofM/N (typical (M/N)0) will be referred to
as theleading N-order termsand the terms of one power higher
in M/N will be called theleading correction termsor the first
mode-coupling corrections.

A. N-Ordering of Single Time Interval Correlation Func-
tions. Using these principles, it was shown19 that theN-orders
of the (multilinear) vertexes in eq 11 (in their maximally
matched form) are

Following these lines of analysis, the matrixM in eq 11 and
the normalized single-time interval correlation functions in eq
9 are,19 in terms ofNRâ ) 〈{L QR} Qâ

/〉 - ∫0
∞ dt 〈æR(t) æâ

/〉

from which we see that single particle modes do not contribute
to the dynamics of single time interval correlation functions of
the collective modes. Similarly, since the superscriptsssin Mss

in eq 25 only mean that one of the components in the each of
the indices ofMsshas a single particle character while the others
are collective, the collective modes do influence the dynamics
of correlation functions of tagged (single) particle densities
through mode-coupling corrections to transport coefficients. For
instance, the generalized self-diffusion coefficientD̃(k, t) is
renormalized through the terms in eq 15 with the bare propagator
replaced by the full one (see the discussion below eq 17), i.e.,

whereDB ) M11
ss is the “bare” diffusion coefficient with weak

k and t dependence andFs(k, t) ) 〈N̂1(k, t)N̂1
/(k)〉 is the self-

part of the dynamic structure factor. Careful analysis of the
mode-coupling contributions to tagged particle transport coef-

ficients is essential in the derivation of observed relations
between quantities such as the self-diffusion coefficient of a
Brownian particle and the viscosity of the fluid.19,24,25

B. N-Ordering of Higher-Order Vertexes and Correlation
Functions. The analysis of theN-ordering of higher-order
vertexes involving mixed tagged and collective particle densities
follows by induction as outlined in ref 15. Using theN-ordering
results for the single time interval correlation functions and the
relation between the single-time interval correlation functions
and the multiple-time correlation functions in eq 22, one obtains
the following N-order in the maximally matched form of the
higher order vertexes in which the central index is a linear tagged
density:

Furthermore, the higher order propagatorsGγ1δ obey the same
N-ordering rules as the higher-order vertexes, namely

Using these results, we see that the two-time interval tagged
particle correlation function (with time intervalst1 and t2)
reduces to a particularly simple form to leadingN-order:

with leading order correction terms

whereG12
ss(t) and G21

ss(t) are higher-order, single time interval
correlation functions. Note that in eqs 27 and 28, the matrix
indices as well as sums over repeated intermediate wave vectors,
as more fully indicated in eq 22, have been suppressed for
notational simplicity. Given the definition ofM112 in eq 20, one
sees that only the second, dissipative term in 20b contributes,
which isO(k0

2). Thus, the first term in eq 30 is, in orders ofk0,
the leading correction term, while the others areO(k0

2).
For the three-time interval correlation function, the leading

N-order contribution is

with the following three terms contributing at the order of the

Mδâ
ss

Mδâ
cs

Mδâ
cc } ) {O(N-(â-δ)) if δ < â

O(N0) if δ g â

Mδâ
sc ) N-1O(Mδâ

ss)

MRâ
cc ) NRâ̂

cc
/ Kâ̂â

cc-1[1 + O(N-1)]

MRâ
ss ) NRâ̂

ss
/ Kâ̂â

ss-1[1 + O(N-1)]

GRâ
cc (z) ) [z - Mcc(z)]Râ

-1

GRâ
ss (z) ) [z - Mss(z)]Râ

-1 (25)

D̃(k, t) ) DB(k, t) + Σss(k, t)

Σss(k, t) ) ∑
i, j,q

M12
ss(N1(k); N1(k - q), Bi(q)) Fs(k - q;t) ×

G11
cc(Bi(q); Bj(q);t) M21

ss(N1(k - q), Bj(q); N1(k)) + ...

Mh γ1δ
csc ) {O(N-(δ-γ)) if γ < δ

O(N-1) if γ ) δ
O(N0) if γ > δ

Mh γ1δ
ssc ) {O(N-1-(δ-γ)) if γ < δ

O(N-1) if γ ) δ
O(N0) if γ > δ

Mh γ1δ
css ) {O(N1-(δ-γ)) if γ < δ

O(N0) if γ g δ

Mh γ1δ
sss ) O(Mγδ

ss)

Gγ1δ ) O(Mh γ1δ) (26)

G111
(2) (t2, t1) ) 〈Q1

s(k - q, t1 + t2)Q1
s(q, t1) Q1

s(k)* 〉

) G11
ss(t2)Mh 111

sss G11
ss(t1) + O(N-1) (27)

G12
ss(t2)Mh 212

sssG21
ss(t1) + G12

ss(t2)Mh 211
sssG11

ss(t1) +

G11
ss(t2)Mh 112

sssG21
ss(t1) (28)

G1111
(3) (t3, t2, t1) ) G11

ss(t3)Mh 110
ss G00(t2)Mh 011

ss G11
ss(t1) +

G11
ss(t3)Mh 111

sssG11
ss(t2)Mh 111

sssG11
ss(t1) (29)
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first mode-coupling corrections:

The O(k0
2) correction here in fact consists of seven more

correction terms, all variants of the formG12(t3)Mh 211G11(t2)-
Mh 111G11(t1) and allO(k0

2).

IV. Applications of Higher Order Correlation Functions

It is often difficult using single time-interval correlation
functions to discern what features of the underlying collective
dynamics of slowly relaxing systems leads to qualitative features
in the relaxation profile in glassy and frustrated systems.
Typically, single time-interval correlation functions in frustrated
systems display nonexponential time decay, often exhibiting a
two-step relaxation processes associated with caging effects and
cooperative flow through heterogeneous dynamics2,3,9 on long
time scales. Given the heterogeneous nature of the dynamics
in such systems, it is natural to ask whattype of relaxation
processes lead to this nonexponential time signature.

In a series of articles,4,12-14 Heuer and co-workers have
examined the information content of higher-order correlation
functions to assess how detailed features of the dynamics
correspond to aspects of the relaxation in glassy systems. In
particular, Heuer et al. have focused on multiple-time correlation
functions designed to proberelaxation type4,14 as well asrate
memory12 associated with the persistence of slow particle motion
in supercooled liquid systems. The basic idea of the multiple
time correlation approach is to examine correlations of particle
motion over several time intervals, separating out distance and
directional correlation.13 In this fashion, one effectively devises
time filters that extract a particular feature of the dynamics to
be analyzed. The fundamental building block of the time
correlation functions is the (real part of) tagged particle density
at time interval∆t01 ) t1 - t0 defined to be

whose ensemble average gives the incoherent scattering function
Fs(k,∆t01). Intuitively, Fs(k,∆t) measures the fraction of particles
moving a distance less than 2π/k over the time interval∆t, and
hencef (t0, t1) can be viewed as a time-filter selecting out slowly
moving particles. The essential idea in identifying the relaxation
type is to consider how the motion of slow particles is correlated
over subsequent time intervals. In the purely heterogeneous
scenario, one expects that motion in subsequent time intervals
has no direction dependence (no back-and-forth motion). On
the other hand, for the purely homogeneous scenario, one rules
out a distance dependence in subsequent time intervals to
exclude the presence of different mobilities. To characterize
these limits, it is helpful to define the three-time correlation
function13

In the homogeneous limit, the projected distancek̂‚∆r12 along

k̂ is independent ofk‚∆r01, and hence the three-time correlation
function factors to

which suggests defining an indicator function for homogeneous
dynamics

that vanishes in the homogeneous limit. On the other hand, in
the case of purely heterogeneous dynamics, consider the
indicator13

where the last equality was obtained by writing out the filter
functions f (t0, t1) in the definition ofFs and F3 in complex
representation. Since the direction of the motion in subsequent
time intervals is not correlated in the heterogeneous limit, the
right-hand side of eq 35 vanishes. Note that both indicator
functions make use of the three-time correlation function of the
tagged particle density and can be expressed in terms the
multiple-time propagators of the previous section as

where the second term on the right-hand side is a special case
of the more general propagatorG111

(2) in eq 27 defined withq )
-2k andt0 ) 0 and the tagged particle densities corresponding
to the number density. Both measures of relaxation type have
been successfully tested26 on simple 1-dimensional model
systems in which the dynamical rules governing motion of a
particle are constructed to be inherently heterogeneous (an
ensemble of particles each moving with constant but different
jump rates) or homogeneous (a collection of particles in which
particles hop between sites with two different site-dependent
rates).

As the functionf (t0, t1) acts as a slow-dynamics filter, it can
be used as a means of selecting a subensemble of the full system.
As an alternative toF3

hom and F3
het in studying the heteroge-

neous nature of the dynamics, one can then examine examine
how long particles that are initially in the slow-dynamics
ensemble remain in this ensemble to get an idea of how long
solidlike domains persist in supercooled and glassy systems.
Such filters are also useful to try to rigorously map deterministic
systems onto simplified models of glassy behavior, such as
facilitated spin models.27-32 A suitable measure of the lifetime
of solidlike domains can be defined by constructing the four-
time correlation function

Generally, it is sufficient to look at a time filter over a fixed
period∆t ) t1 - t0 ) t3 - t2, where the waiting intervalt2 )
t1 + τ between subsequent applications of the time filter isτ.

G12
ss(t3)Mh 212

sss G21
ss(t2)Mh 111

sss G11
ss(t1) +

G11
ss(t3)Mh 111

sss G12
ss(t2)Mh 212

sss G21
ss(t1) +

G12
ss(t3)Mh 212

sss G22
ss(t2)Mh 212

sss G21
ss(t1) + O(k0

2) (30)

f (t0, t1) ) cos(k·(r (t1) - r (t0))) ≡ cos(k·∆r01)

) Re(N̂1(k, t1)N̂1
/ (k, t0)) (31)

F3(∆t01, ∆t12) ) 〈f (t0, t1)f (t1, t2)〉

) 〈cos(k·∆r01) cos(k·∆r12)〉 (32)

F3(∆t01, ∆t12) ) 〈f (t0, t1)〉〈f (t1, t2)〉

) Fs(k, ∆t01)Fs(k, ∆t12) (33)

F3
hom(k, ∆t01, ∆t12) ) F3(∆t01, ∆t12) -

Fs(k, ∆t01)Fs(k, ∆t12) (34)

F3
het(k, ∆t01, ∆t12) ) Fs(k, ∆t10 + ∆t12) - F3(∆t01, ∆t12)

) -〈sin(k·∆r01) sin(k·∆r12)〉 (35)

F3(k, ∆t01,∆t12) ) 1
2
Fs(k,∆t01 + ∆t12) +

1
2

〈N̂1(k, t0 + t1 + t2)N̂1(-2k, t0 + t1) N̂1(k, t0)* 〉 (36)

C̃(4)(t0, t1, t2, t3) ) 〈f (t0, t1)f (t2, t3)〉

) 〈cos(k·∆r01) cos(k·∆r23)〉

Mode-Coupling Theory J. Phys. Chem. B, Vol. 109, No. 45, 200521431



For large waiting timesτ, once expects that only a random
selection of the particles initially in the slow-ensemble remain
in the slow ensemble so thatC̃(4) f Fs(k,∆t)2 as τ f ∞. It
therefore is logical to focus on the fluctuation off (t0, t1) defined
as

If ∆t is chosen to be shorter than the inverse of the (typical)
relaxation rate of solidlike domains then the time scaleτ at
which this decays to zero can be interpreted as the domain
relaxation time.

Note that this quantity is related to theG1111
(3) , expressed in

eqs 29 and 30, via

whereκ ) {N1(k)} andκ′ ) {N1(-k)}.
A. Calculation of Domain Relaxation Rate and Relaxation

Type Indicators. Application of the mode-coupling theory of
multiple-time correlation functions developed in section II to
evaluate the domain relaxation rate via eq 37 or the relaxation
type indicators defined in eqs 34 and 35 requires complete
specification of the slow basis set variables. As the indicators
are of significant interest in dense supercooled liquids in which
Fs(k, t) exhibits nonexponential decay on molecular length
scales, the relevant slow modes must describe the long-time
evolution of density fluctuations for wave vectorsk near the
peak in the static structure factor. Clearly the dynamics at such
short length scales is outside the regime of hydrodynamic theory
for which one has a good idea of what constitutes the slow
modes of the system. For dense systems, however, there is solid
evidence from the theory of hard sphere liquids33,34 of the
existence of short-wavelength “collective” modes that are
significantly slower than other “kinetic” modes of the system.
These collective modes are generalizations of the hydrodynamic
tagged particle and heat density modes to finite wave vectors.
The application of the mode-coupling theory outlined here to
molecular length scales is challenging due to the difficulty in
evaluating the contribution of the fluctuating forcesæR(t) to the
coupling vertexesMh Râγ, and requires new input from either
kinetic theory or simulation. Work along these lines is in
progress.

To get a feeling of what the mode-coupling predictions of
the correlation functions defined above look like, we focus on
a moderately dense system (in fact relatively dilute compared
to a glass) and examine these functions in the hydrodynamic
limit, as was done in ref 35. For such a system, it is sufficient
to let the set of slow modes be composed of the tagged particle
number density fluctuationsN̂1(k) and the collective hydrody-
namic densities, namely the number density fluctuationsN̂(k),
the longitudinal momentum densityPl(k) ) k̂‚P(k), and the
orthogonalized energy density fluctuationsH(k) (see ref 35 for
the precise definitions of these variables for a hard sphere
system). For this specific choice of basis set, the time-derivative
of the tagged particle number densitydoeshave a fluctuating
componentæN1

s (k, t) that contributes to theMh 111
sss vertex. How-

ever since the time derivative ofN̂1(k) is proportional tok )
|k|, one expects these “dissipative” contributions to be relatively
unimportant in the hydrodynamic limit compared to the non-
dissipative couplings〈QR

s Qâ
s Qδ̂

s〉 / Kδ̂δ
ss-1. The higher-order

vertexes necessary to calculate the multiple-time correlation

functions for the indicator functions to leadingN-order are
therefore

where we have used the factorization properties19 of multiple-
point correlation functions. In the equations above,k0 represents
the largest wave vector present in the correlation function. The
static part of the multiple-point vertexesMh 211

sss and Mh 112
sss coming

from the time integral of 20a vanish sinceQ1
s(k)Q1

s(k1) ) Q1
s(k

+ k1) and 〈Q2
s Q1

s〉 ) 0 by construction. The lowest-order
contribution in wave vector to these vertexes therefore comes
from the time integral of 20b and isO(k0

2).
1. Relaxation Type.Combining these results with the leading

N-order expansion terms ofG111
(2) and insertion into the expres-

sion for F3 in eq 36 yields

whereF3
mc is the first mode-coupling contribution toF3. Note

that from eq 28, we see the mode-coupling corrections involve
the evaluation of terms such as

In eq 41, the sum extends over the three hydrodynamic collective
variablesBi(q) and G12

ss, G21
ss denote the multiple-point mixed

tagged/collective correlation function

provided the collective densities are orthogonal〈Bi(k)Bj
/(k)〉 )

δij〈Bi(k)Bi
/(k)〉. Similarly, G21 is defined as

Using the mode-order expansion eq 19, the multiple-point
correlation functionG21 can be approximately written as

with a similar expression forG12. Note that in eq 43, there is
an implicit sum over collective mode indexj. In practice, it is
often convenient to work in a basis set in which the matrix of
collective linear-linear (normalized) correlation functions is

C(4)(∆t, τ) ) 〈f (0,∆t)f (τ + ∆t,τ + 2∆t)〉 - Fs(k,∆t)2

C(4)(∆t, τ) ) 1
4
[Gκ′κκκ

(3) (∆t, τ, ∆t) + Gκκ′κκ
(3) (∆t,τ,∆t) +

Gκκ′κ′κ′
(3) (∆t, τ, ∆t) + Gκ′κκ′κ′

(3) (∆t, τ, ∆t)] - Fs(k, ∆t)2 (37)

Mh 111
sss ) 〈N̂1(k - q)N̂1(q)N̂1

/ (k)〉 + O(k0
2)

) 1 + O(k0
2) (38)

Mh 212
sss ) 〈Q2

s(k - q - q1,q1)N̂1(q)Q2
/s(k - q′′1, q′′1)〉 /

K22
ss-1(k - q′′1, q′′1; k - q′1, q′1) + O(k0

2)

) K11
cc(q1) / K11

cc-1(q1)δq1q′1

) δq1q′1
+ O(k0

2) (39)

F3(k, t1, t2) ) 1
2
Fs(k, ∆t01 + ∆t12) +

1
2
Fs(k, ∆t12)Fs(k, ∆t01) + 1

2
F3

mc(k, ∆t01, ∆t12) (40)

∑
i,q

G12
ss(N̂1(k); N̂1(k - q)Bi(q); ∆t12) /

G21
ss(N̂1(k - q)Bi(q); N̂1(k); ∆t01) (41)

G12
ss(N̂1(k); N̂1(k - q)Bi(q); t) ≡

〈N̂1(k, t)Q2
s;N1B/

i(k - q,q)〉/〈Bi(q)Bi
/(q)〉

G21
ss(N̂1(k - q)Bi(q); N̂1(k); t) ≡

〈Q2
s;N1Bi(k - q, q; t)N̂1

/(k)〉 (42)

G21
N1Bi;N1(k - q, q; t) ) ∫0

t
dτ Fs(k - q, t - τ) ×

∑
j

G11
BiBj(q, t - τ)M21

N1Bj;N1(k - q, q; k)Fs(k,τ) (43)
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diagonal. In the hydrodynamic regime, this corresponds to
choosing theBi set to be composed of the hydrodynamic sound
and heat modes.

Returning to the problem of calculating relaxation type,
inserting eq 42 into the definition of the indicator functions
yields

where

In the hydrodynamic limit, ignoring mode-coupling effects, one
expects that an exponential decay of the intermediate scattering
function of the formFs(k, t)∼exp(-D|k|2t), whereD is the self-
diffusion coefficient. In this case,∆F2 ) 0 and both indicators
are approximately zero. On the other hand, ifFs(k, t) has a
nontrivial relaxation profile, perhaps of the form of a stretched
exponentialFs(k, t)∼exp{ - [t/τ(k)]ẫ} whereẫ is the stretching
exponent, then∆F2 * 0. It is therefore evident that mode-
coupling effects are absolutely essential to distinguish between
homogeneous and heterogeneous types of nonexponential
relaxation. Although this result is obvious since mode-coupling
must be invoked to give rise to nonexponential relaxation in
the first place, it is thedifferencein the time dependence of
∆F2 and the mode-coupling correctionsF3

mc that allows one to
distinguish between the two relaxation types. On the molecular
scale, one also anticipates a contribution to these expressions
from the dissipative part ofMh 111 that corrects the simple
factorization result at lowestN-order

Note that the effect of these corrections is not to modify the
time behavior but to modify the wave vector dependence on
the right-hand side of eq 47. This modification only makes sense
whent1 andt2 are large compared to the microscopic relaxation
time tm corresponding to the time scale after which the
instantaneous approximation implicit in eq 21 is valid.

2. Domain Relaxation.The rate of domain relaxation can be
similarly calculated using theN-ordering scheme to simplify
the multiple-time correlation functions in eq 37. Using the form
of the higher-order vertexes in the hydrodynamic limit andG00

) 1, G11
ss(N̂1(k ) 0); N̂1(k ) 0);τ) ) 0, andG11

ss(N̂1(k); N̂1(k);
∆t) ) Fs(k,∆t), one obtains

The same holds for the other four time correlations in eq 37,
therefore the leading orders of the multiple-time correlations
are canceled by the last term in eq 37, so that to leading order
C(4)(∆t,τ) is zero. The first nonzero contribution arises at first
mode-coupling order, as given by eq 30. However, the terms
in that equation that involveG21(N̂1(q), Bi(-q); N̂1(0); t) are
zero becauseN̂1(0) ) 0. Thus, only the last term from eq 30
survives. Taking together the contributions from the four higher-
order terms in eq 37 and using the fact thatG22

ss factorizes to

leading order, one obtains the mode coupling result

where eq 43 may be used forG12
ss andG21

ss.
As this result already somewhat suggests, for dense, super-

cooled liquids, one anticipates that the conversion time of
solidlike domains to liquidlike domains of typical length scale
l ∼ 2π/k also occurs on time scales corresponding to the wave
vector-dependentR-relaxation time ofFs(k, t).

B. Numerical Analysis of Multiple-Time Correlation
Functions of Tagged Densities in a Hard Sphere System.
To validate the mode-coupling theory approach to multiple-
time correlation functions of collective densities, extensive
simulations of a hard sphere system at moderate densities were
carried in ref 35. It is straightforward to extend these simulations
to incorporate calculations of tagged particle densities to test
the simple factorization result for multiple-time correlation
functions of the tagged particle number density in eq 47 and to
examine how well the theory predicts higher-point correlation
functions of mixed tagged/collective densities that are necessary
to compute the mode-coupling corrections to the leadingN-order
factorization. All simulation results presented in this section were
obtained using the simulation methodology described in detail
in ref 35 on a hard sphere system of a relatively low reduced
densityF* ) F/Fc ) 0.1, whereFc is the density at close packing.
The size of the periodic system was chosen to have cubic box
lengthsLx ) Ly ) Ly ) 47.3361 such that the simulation system
containedN ) 15 000 hard-sphere particles of massm ) 1 and
diametera ) 1 at the chosen density. For this system size, the
smallest dimensionless wave vectork0a ) 2πa/Lx ) 0.132736
so that all quantities examined are roughly in the hydrodynamic
regime. For this system, the mean collision time calculated from
Enskog theory36 is approximatelyte ) 1.42417 at an inverse
temperatureâ ) 3, while the mean-free path isle ) 1.85561 so
that k0le ) 0.246305. Under these conditions, the estimated
relaxation time ofFs(k0, t) is τ(k0) ∼ (Dk0

2)-1 ≈ 55te, whereD
) 0.725586 is the self-diffusion coefficient calculated from the
Enskog theory result

wherews ) 1.01896 andg(a) is the radial distribution function
at contact. For a hard-sphere system,g(a) can be estimated using
the Carnahan-Starling equation of state37 and the expression
for the pressurep of a hard-sphere system

whereb ) 2πa3/3 andηj ) πFa3/6. The simulations were run
for at total time of approximately 1200τ(k0) to ensure reasonably
good statistics. Following ref 35, statistical uncertainties were
estimated using the symmetry properties of the correlation
functions. In this approach, the statistical uncertainty for a real
correlation function was constructed from a histogram of the
values of the imaginary part of the complex correlation function,
which vanishes on average, to determine the 96% confidence
intervals. To simplify the comparison between theoretical
predictions and the simulation results, all wave vectors were

F3
hom(k, ∆t01, ∆t12) ) 1

2
[∆F2(∆t01, ∆t12) + F3

mc] (44)

F3
het(k, ∆t01, ∆t12) ) 1

2
[∆F2(∆t01, ∆t12) - F3

mc] (45)

∆F2(∆t01, ∆t12) ) Fs(k, ∆t01 + ∆t12) -
Fs(k, ∆t01)Fs(k, ∆t12) (46)

〈N̂1(k - q, t1 + t2)N̂1(q, t1)N̂1
/(k)〉 ≈

Fs(k - q, t2)Fs(k, t1)[1 + O(k0
2)] (47)

Gκ′κκκ
(3) (∆t, τ, ∆t) ≈ Fs(k, ∆t)Fs(k, ∆t) (48)

C(4)(∆t, τ) ) Re(∑
i,j,q

G12
ss(N̂1(k); N̂1(k - q)Bi(q); ∆t) ×

Fs(q, τ)G11
BiBj(q, τ) ×

G21
ss(N̂1(k - q)Bj(q); N1(k); ∆t)) + O(k0

2) (49)

D )
3ws

8xâmπg(a)a2
(50)

âp
F

) 1 + ηj + ηj2 - ηj3

(1 - ηj)3
) 1 + bFg(a) (51)
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taken to be collinear so thatk‚q ) kq. To further improve
statistics, the wave vectors were independently taken along the
three principal directionsx̂, ŷ, and ẑ of the cubic simulation
box and averaged.

1. Two Time-InterVal Correlation Function.One of the central
results of section 4, the simple factorization of multiple-time
correlation functions of the tagged particle number density (see
eq 49) is simple to verify numerically. To validate this
prediction, numerical calculations of the correlation function
g(2)(t1, t2) ) 〈N̂1(k - q, t1 + t2)N̂1(q, t1)N̂1

/(k)〉 were computed
as a function of wave vector combinations (k,q) ) (m, n)k0 for
m andn values ranging from 1 to 3 withm * n. To simplify
the comparisons, three different time cross sections (t1, t2) for
each pair (m, n) were calculated, namely (t, t), (t, 3t) and (3t,
t). These particular choices oft1 and t2 are the simplest to
implement when simulation data is stored in standard linear array
data structures. The results, shown in Figure 1, show that the
productgf

(2) ) Fs(k - q, t2)Fs(k, t1) approximatesg(2)(t1, t2)
very well for all choices of wave vector combinations and all
time cross sections. However, given that the statistical uncer-
tainties for bothg(2) and gf

(2) are on the order of 0.002, it is
clear that the numerical results indicate a small but systematic
difference between these two quantities which reaches a
maximum a short timest ∼ 5te, as can be seen in the panels on
the right-hand side of Figure 1.

This difference should be well-reproduced by the mode-
coupling correction term in eq 41, although this has not yet
been verified.

2. Multiple-Point Correlation Function.Although it is
certainly possible to calculate the leading order mode-coupling
correction term in eq 41 analytically using hydrodynamic forms
for the collective correlation functionsG11

cc(t), the calculation is
tedious due to the sum over different collective modesBi.
However, to validate the applicability of the mode-coupling
theory in the calculation of the first order correction termsF3

mc,
we examine the quality of the predicted form of the multiple-

point correlation function

whereS(q) ) 〈N̂(q)N̂*(q)〉 is the static structure factor, against
direct numerical calculation (note: in eq 52 we took the
thermodynamic limit). From eq 43, we see that this correlation
function is approximately given by

whereBj runs over the set{N, Pl, H} or some variant of it.
Note that with this choice of collective densities, the computation
of eq 53 requires the calculation of 3 coupling vertexes
M21

N1N;N1, M21
N1Pl;N1, and M21

N1H;N1, as well as the input of the
collective linear-linear time correlation functionsG11

NN, G11
NPl,

and G11
NH. In principle, analytical forms of theG11 time

correlation functions can be utilized in the hydrodynamic regime
with transport coefficients either fitted from simulation data or
taken from kinetic theory. Given the simplicity and ease of
numerically calculating theG11 with excellent precision, we have
chosen to evaluate the convolution integrals in eq 53 by
numerically integrating simulation data using a version of
Simpson’s rule that allows interpolation of data. From time-
inversion symmetry,M21

E ) 0 for Bj ) N or H, and it is evident
that the only coupling at “Euler” order arises forBj ) Pl.
However, as noted for the case of multiple-point correlation
functions of purely collective densities in ref 35, the inclusion
of the additional couplings toN andH arising at “dissipative”
orderM21

D is essential if quantitatively accurate predictions are
desired. It may appear at first glance that the dissipative
contributions are negligible in the limit of small wave vectors
since they introduce additional factors ofk0. In fact the overall
order of the multiple-point correlation functions is determined
by a wave vector-dependent prefactor multiplied by the con-
volution of the two-point, single time interval correlation
functions G11. The time convolution of these correlation
functions can give rise to additional factors of wave vector
depending on their symmetry properties, so that the overall
contribution of thePl andN or H coupling are comparable in
magnitude.

The evaluation of the dissipative contribution to coupling
vertexesM21

N1N;N1 and M21
N1H;N1 requires external input. In the

Appendix, these vertexes are evaluated in the small wave vector
limit by relating the dissipative vertexes to the Enskog self-
diffusion coefficient and its derivatives with respect to thermo-
dynamic parameters. The predictions are therefore free of any
adjustable parameters and constitute a rigorous test of the mode-
coupling theory. The results of the comparison are shown in
Figure 2.

Note that although the data are a bit noisy, the theoretical
predictions generally fall within the confidence intervals of the
simulated data except at very short times (t ∼ 2te) where one
expects the theory to break down due to the instantaneous
approximation of the coupling vertexes.

V. Summary

In this paper, a mode-coupling theory was presented in which
multiple point and multiple-time correlation functions for
collective densities and tagged particle densities are expressed

Figure 1. Comparison of the multiple-time correlation functiong(2),
the factored formgf

(2) and their difference as a function of wave vector
pair (m, n) and time cross-section (t1, t2). The left-hand side panels
contain the simulation results forg(2) (unconnected symbols) andgf

(2)

(lines), and the right-hand side panels contain plots ofg(2) - gf
(2). In all

panels, the unconnected dots, crosses and triangles correspond to the
simulation results for time cross sections (t, t), (3t, t), and (t, 3t),
respectively. The results in the top, middle and bottom rows are for
wave vector sets (1, 2), (1, 3), and (2, 1), respectively. For clarity in
the figures, the 96% confidence intervals, estimated to be roughly 0.002,
have been omitted.

G21
ss(N̂1(k - q)N̂(q); N̂1(k); t) ≡

〈N̂1(k - q, t)N̂(q, t)N̂1
/(k)〉 -

S(q)

〈N〉
Fs(k, t) (52)

G21
N1N;N1(k - q, q; t) ) ∫0

t
dτ Fs(k - q, t - τ) ×

G11
NBj(q, t - τ)M21

N1Bj;N1(k - q, q; k)Fs(k, τ) (53)
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in terms of ordinary two-point, single-time interval correlation
functions and a set of vertexes. The theory developed here does
not assume that fluctuating forces (noise) are Gaussian distrib-
uted and, in principle, does not require an ansatz to obtain self-
consistent equations. Furthermore, unlike kinetic theories, it is
not restricted to low densities and should be applicable to dense
fluids where cooperative motions of particles and collective
modes are important.

The formalism is based on projection operator techniques,
which, for ordinary two-point, single-time correlation functions,
lead to a generalized Langevin equation in which the memory
function decays on a microscopic time scale (eq 6). The simple
extension of the projection operator formalism to multiple-time
correlation functions of tagged particle densities is complicated
by the fact that the fluctuating forces appearing in the general-
ized Langevin equation do not obey Gaussian statistics.
Furthermore, multiple-time correlations of the fluctuating force
can in fact have a slow decay when the time arguments of these
forces become comparable. To treat multiple-time correlation
functions of fluctuating forces properly, the correlation functions
were manipulated so that the time arguments of all fluctuating
forces appearing in the correlations were guaranteed to be well-
separated, ensuring that all memory functions which arise in
the mode-coupling theory decay to zero on a molecular time
scale. This construction allows equations which are local in time
to be obtained which relate the multiple-time correlation function
to two-time but multiple-point correlations coupled by es-
sentially time-independent vertexes. These expressions, in turn,
can be written as convolutions of two-point, single time interval
“propagators” coupled by time-independent vertexes. These
propagators can either be taken directly from experiment,
simulation, or can be solved self-consistently within the mode-
coupling formalism. The vertexes, which are composed of a
static part (Euler term) and a generalized transport coefficient,
can similarly be calculated from kinetic theory or taken from
molecular dynamics and Monte Carlo simulations.

The equations for higher-order correlation functions contain
an infinite sum of terms which can be made tractable for systems
with a finite correlation length by applying a cumulant expansion
technique pioneered by Oppenheim and co-workers19,21,22termed
the N-ordering method. The method was applied to obtain the
leading order and first mode-coupling corrections of expressions
for tagged-particle density multiple-time and mixed tagged/

collective particle density multiple-point correlation functions
designed to probe detailed aspects of the relaxation profile of
glassy systems.

The mode-coupling theory outlined here is the first step
toward a fully microscopic theory applicable to molecular length
scales that enables one to analyze the mapping of the dynamics
in deterministic glassy systems to stochastic spin model of
glasses, as well as to define subensembles via filters based on
dynamical and spatial properties to probe dynamic heteroge-
neities, clustering properties and many other aspects of the
dynamics of frustrated systems.
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Appendix: Evaluation of the Mode-Coupling Vertexes

As mentioned in the main text, the vertexes required for the
calculation of the mode-coupling correction to the factorization
of the multiple-time correlation functionF3(t1, t2) areM21

N1Pl;N1,
M21

N1N;N1 andM21
N1H;N1, where the general form of the vertexM21

ss

is

where M21
E is referred to as the “Euler” contribution to the

vertex,M21
D is the “dissipative” part of the vertex, andæ(t) is

the fluctuating force defined in eq 10.
Examining first the Euler contributionsM21

Ess, we note that
since〈LQ2

s Q1
/s〉 ) - 〈Q2

s
LQ1

/s〉, we have

From the time-reversal symmetry properties of the correlation
functions, we see thatM21

Ess) 0 for B ) N andB ) H, and for
B ) Pl, we find

Evaluation of the dissipative vertexesM21
Dss requires the

calculation of the linearæ1 and bi-linearæ2 fluctuating forces.
For the linear fluctuating force, we have (in the thermodynamic
limit)

and the bi-linear fluctuating force is

Figure 2. Comparison of simulated (unconnected dots) and predicted
(solid lines) values ofG21(t) as a function oft. The results in the top
row correspond to wave vectors pairs (1, 2) and (2, 1) from left to
right, those in the middle row correspond to (1, 3) and (3, 1), and those
in the bottom row correspond to (2, 3) and (3, 2).

M21
ss ) M21

Ess+ M21
Dss

M21
Ess) 〈LQ2

s Q1
/s〉·K11

ss-1 (A.1)

M21
Dss) - ∫0

∞
dτ 〈æ2

s(τ)æ1
/s〉·K11

ss-1 (A.2)

M21
Ess(N̂1(k - q)B(q); N̂1(k)) )

i
m

〈Q2
s(N̂1(k - q), B(q))P1

/(k)〉·k (A.3)

M21
Ess(N̂1(k - q)Pl(q); N̂1(k)) ) ik·q̂

â
(A.4)

æ1(k, t) ) eP⊥Lt
P

⊥
LN̂1(k)

) eP⊥LtiP1(k)·k̂/m (A.5)

æ2(k - q, q; t) ) eP⊥LtP⊥LQ2
s(k - q, q)
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whereP⊥ is a projection operator that projects onto a subspace
orthogonal to that spanned by the multilinear basis setQR.
Noting that (in the thermodynamic limit)

andP⊥N̂1(k - q)P(q) ) 0, we see that, att ) 0, the bilinear
fluctuating forces are

Inserting these results into the expressions for the dissipative
vertexes and expanding the resulting expressions in powers of
the base wave vectork0, one finds

where we have definediq‚jH(q) ) -2â/x6 P⊥LÊ(q). Noting
that the Green-Kubo expression for the self-diffusion coefficient
m2D ) ∫0

∞ dt 〈P1
x(t)P1

x〉 and that〈AN̂〉 ) ∂〈A〉/∂(âµ) and〈AÊ〉 )
-∂〈A〉/∂â, where µ is the chemical potential of the system,
allows us to write

The dissipative vertexM21
ssN1H;N1 contains a new transport

coefficient ∫0
∞ dτ 〈jH(τ)P1〉 which could, in principle, be

evaluated by doing a short-time expansion or using uncorrelated
collisions in a kinetic theory. Nonetheless, we expect this
contribution to be very small since〈jH(τ)P〉 is strictly zero due
to the projection operatorP⊥. In the numerical work in the main
text, we have set this term to zero.

Using the Enskog form for the self-diffusion coefficient and
the Carnahan-Starling equation of state, we find that

Thus, theM21 vertexes used in the main text are
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Q2
s(N̂1(k - q)N̂(q)) ) N̂1(k - q)N̂(q) -

S(q)

〈N〉
N̂1(k)

Q2
s(N̂1(k - q)Pl(q)) ) N̂1(k - q)Pl(q)

Q2
s(N̂1(k - q)H(q)) ) N̂1(k - q)H(q) (A.6)

æ2
s(N̂1(k - q)N̂(q)) )

i(k - q)
m

·P1(k - q)N̂(q) -

S(q)

〈N〉
ik
m

·P1(k)

æ2
s(N̂1(k - q)Pl(q)) )

i(k - q)
m

·P⊥P1(k - q)P(q)·q̂ +

P
⊥N̂1(k - q)LP(q)·q̂

æ2
s(N̂1(k - q)H(q)) )

i(k - q)
m

·P⊥P1(k - q)H(q) +

P
⊥N̂1(k - q)LH(q)

M21
ssN1N;N1 ) -

(k - q)·k

m2 ∫0

∞
dτ 〈P1

x(τ)P1
xN̂〉+

k2S(q)

m2〈N〉
∫0

∞
dτ 〈P1

x(τ)P1
x〉 + O(k0

3)

M21
ssN1Pl

;N1 ) O(k0
3)

M21
ssN1H;N1 ) -

(k - q)·k

m2 ∫0

∞
dτ 〈P1

x(τ)P1
xH〉 -

k·q
m∫0

∞
dτ 〈jH(τ)P1〉 + O(k0

3)

M21
ssN1N;N1 ) -(k - q)·k( ∂D

∂âµ)â
+

S(0)

〈N〉
Dk2 + O(k0

3)

M21
ssN1H;N1 ) -

(k - q)·k

x6
[3( ∂D

∂âµ)â
+ 2â(∂D

∂â)âµ] -

k·q
m∫0

∞
dτ 〈jH(τ)P1〉 + O(k0

3)

( ∂D
∂âµ)â

) - D
g(a)

ηj(2ηj - 5)

2(1 - ηj)4

S(0)

〈N〉

(∂D
∂â)âµ

) - D
2â

+ D
g(a)

ηj(2ηj - 5)

2(1 - ηj)4

3S(0)

2â〈N〉
(A.7)

M21
ssN1N;N1 )

DS(0)

〈N〉 [k·(k - q)

g(a)

ηj(2ηj - 5)

2(1 - ηj)4
+ k2]

M21
ss(N̂1Pl; N1) ) ik·q̂

â

M21
ssN1H;N1 )

D(k - q)·k

x6
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