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The theoretical framework for higher-order correlation functions involving multiple times and multiple points

in a classical, many-body system developed by Van Zon and SchoRelgs[ Re. E 2002 65, 011106] is
extended here to include tagged particle densities. Such densities have found an intriguing application as
proposed measures of dynamical heterogeneities in structural glasses. The theoretical formalism is based
upon projection operator techniques which are used to isolate the slow time evolution of dynamical variables
by expanding the slowly evolving component of arbitrary variables in an infinite basis composed of the
products of slow variables of the system. The resulting formally exact mode-coupling expressions for multiple-
point and multiple-time correlation functions are made tractable by applying the so{dadietering method.

This theory is used to derive for moderate densities the leading mode coupling expressions for indicators of
relaxation type and domain relaxation, which use dynamical filters that lead to multiple-time correlations of
a tagged particle density. The mode coupling expressions for higher order correlation functions are also
successfully tested against simulations of a hard sphere fluid at relatively low density.

I. Introduction correlated fashion, but with different rates, so that the observed

A complete understanding of the physical processes underly-Nonexponentiality is a consequence of the superposition of
ing the transition between the high-temperature exponential different exponential relaxation processes. Of course neither

relaxation of density fluctuations of a fluid and the nonexpo- Scenario may apply over all time scales and the mechanism may
nential relaxational profiles observed at lower temperatures, Shift from one that is primarily homogeneous to one that is
especially near the glass transition, remains elusive. A numberPrimarily heterogeneous. It is equally possible that one type of
of interesting features have been noted in dense, supercooledelaxation may not even predominate over another.

systems from computer simulation studie’s as well as To distinguish between these scenarios, it is helpful to
multidimensional NMR? and video microscopy experimettst construct quantitative measures which unambiguously signal the
that appear to be related to this crossover from simple presence of a specific mechanism. Such constructions can be
exponential to multiexponential or stretched exponential relax- based on filters!2-14 that select out subensembles of particles
ation: One typical feature of such systems is the appearance ofto have specific dynamical properties over a sampling period.
heterogeneOUS|y distributed regions of the fluid which differ A Simp]e examp|e of such a filter is one that selects out
dramatically in their mobility and local density. While fluid  individual particles that move either more or less than a critical
motions are relatively unrestricted in regions of low density, gjstance over a fixed period of time. One can then examine
structural rearrangements in regions of high local density at @ time correlations within these subensembles to gain new insight
given time have been observed to occur through relatively rapid, jntq detailed features of the dynamics. When time-filters are
collective stringlike motions.Furthermore, regions which at ijizeq in this fashion, time correlation functions of particles
one.tlme were O.f relgtlvely l.OW density and in which particle contained in the subensemble necessarily involve multiple-time
motions were primarily fluidiike can become locally dense and intervals. Filters based on single-particle properties then can

immobile. : . : .
It is well-known that a variety of different mechanisms are be e.xpresse(.j.as multiple-time correlation functions of tagged
particle densities.

consistent with nonexponential relaxation and that this relaxation ) o ) o ) ) )
is somehow related to the heterogeneous nature of the dense Gl\_/en this interesting application of multiple-time correlation
fluid. In one possible scenario of nonexponential relaxation, functions, the need for a theory that enables one to calculate
fluctuations of local density relax in the same intrinsically Such quantities from first principles is clear. In ref 15, such a
nonexponential way, where the cooperative motion of particles theory was developed based on mode-coupling theory for
depends strongly on the local environment and is correlated overmultiple-time correlation functions of collective densities (i.e.,

a long time period or “history”. Another possible mechanism particle number, momentum and energy densities). The theory
is that each region of the fluid rearranges in a less strongly was tested successfully on a hard sphere gas at moderate
densities in the hydrodynamic limit where the relevance of
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only tagged densities or only collective densities as well as any system are taken together in a single ve&oAs mentioned

combination of the two types. above, for a structureless fluid, these are typically the number
The paper is organized as follows: The mode-coupling density, the momentum density, and the energy density:

formalism of multiple-time correlation functions is introduced

in section |l based on projection operator methods, and equations N

describing the evolution of multiple-point densities of arbitrary Zé(r = 1y(1)

type are obtained. These equations are manipulated to yield N(r, 1) "

expressions f(_)r corr_elatlon functions of mu_It|pIe-t|me |ntervaI§ B(r,t) = |P(r, 1) | = b.()O(r — (1))

that are local in all time arguments. In section Ill, a systematic £ n

method of determining what types of contributions are the most Er. 1) N

significant for a particular multiple-time interval correlation e,()o(r — r (1)

function of tagged particle densities is introduced and the &

leading-order expressions for two- and three-time interval

correlations of a tagged particle density are presented. In sectionqere, r(t) is the position of particlen at timet, py(t) is its

IV, specific ap_plications_ (_)f muItipIe-time correlatior_w functio_ns momentum ana(t) its energy (kinetic and potential). It will
of tagged particle densities are examined. In particular, direct pe convenient to work in Fourier space:

measures of relaxation type and of the rate at which solidlike

domains become fluidized are analyzed and leading order mode- N
coupling expressions for these measures are obtained. Section Bk, t) = Zle'k""(t)bn(t) (2)
IV concludes with a numerical comparison of the leading order n=

theoretical predictions with direct simulation results for a low
density, hard sphere system in the hydrodynamic limit, and Whereba(t) = (1, pn(), en(t)).

section V contains a summary. Since the goal of the mode-coupling theory outlined here is
to describe the time correlation functions of single particles,
Il. Mode-Coupling Formalism slow tagged particle densities must be included, i.e.
A. Slow Variables. The basic assumption of mode-coupling Ny (r, t) = O(r — ry(t)

theory is that the long time behavior of all time correlations

functions can be completely expressed in terms of the evolutionhere particle 1 is the tagged particle. In the Fourier representa-
of a set of slow modes of the system. Although the theory does tion, the tagged particle number density is simply

not specify the identity of the slow modes, physical arguments

can often serve as a guide to define a finite set of variables that N, (k) = kn® 3)
serve as a dynamical basis for the long time evolution. For !
example, since the particle number, the momentum, and the total
energy of a fluid of structureless particles are constants of
motion, a minimal basis set for the slow evolution of the system
must include the long wavelength modes of densities of these
quantities.

Once the slow basis set has been determined, the slow
component of an arbitrary dynamical quantity can be extracted
by finding the projection of the variable onto the subspace
spanned by the set of slow variables. Similarly, projecting the
variable onto the complement of this subspace should yield 45f B are relevant. Furthermore, to accommodate correlation
fast quantity. . functions of certain fast variables one might be interested in

Projection operators are linear operators, and hence only the(e 9. Puk) = pa(H)ekm0), A'(k) is defined as the vector
linear dependence of a dynamical variable on the slow variablesco'm'F’)oSed of all linear S|0\;V variables plus any fast variables of
can be projected out by such a procedure. In general, however’interest.

one expects the time dependence of most dynamical variables It will prove to be convenient to construct a basis set that is

teoaﬁte igﬁnggﬁzgjrn%tr'g?egfi::g ti:gvrh\é%r:atgeséot]@;urgi?\lm;he orthogonal in the number of factors of the linear Aeind B,
y P y Dy 9 fwhich is guaranteed by the definition

slow subspace to include the space spanned by all powers o

The tagged particle density is taken together via{k) into a
larger vectoA(k). Henceforth, components afwill be denoted

with a superscrips when referring tosingle particledensities
(which have no summation over particles in their definition)
and with a superscript when involving collective densities
(which have a summation over all particles in their definition).

We require that the slow subspace be spanned by all powers

of the slow variables. Since the prodidi(k)Ni(q) = Nai(k +

q) is just a linear variable, beyond the linear level only products

the slow variables. In this way, an analytic dependence of the Q=1
slowly evolving component of a dynamical variable on the slow .
variables can be described. The basis of the slow subspace is Qu(k) = A (k) — A (k)= A(k)
referred to as the multilinear basis. ~ N

Consider an equilibrium system composed\gfarticles that Qu(ky, k) = AlkB(ky)
is described by a translationally invariant Hamiltonign The 1
gme evolution of any quantity (phase space functionig given _ Ij\(kl)é(kz) QO Kadfl % Q,

y |a]=0
C(H) = LC() @

with L the Liouvillian operator, which is the Poisson bracket Here the following notation has been used:

with the Hamiltonian. o [3--Odenotes the (grand canonical) equilibrium ensemble
To describe the slow evolution of dynamical variables within average, which is used to define the inner product.

the projection operator formalism, the slow variables of the ¢ A superscript %” defines complex conjugation.
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o A Greek lower case letter denotes a set of pairs, each pairabove equation, although, of course, the different components

containing a component index and a wave vector.
¢ |a| denotes the number of pairs in the setthe so-called
mode order

of Q, are coupled.
The memory kerneMi;(t) involves the time correlation of
the fluctuating forcep,, for which the formalism as presented

o A hatted Greek letter has the same mode order as itsthus far provides no method of evaluating. However, provided

unhatted variant but is otherwise unrelated.

e Q, is the same aQ (K1, ..., Kio). Also, in the rest of the
paper, the short hand notation of a numbéarstead of a Greek
letter will often be used to indicate a set of mode order is n.

o The “«” product involves a summation over the pairs of
wave vectors and indices im, divided by all ways in which

P} projects out all the slow behavior gf(t), [1(t) @10 which
contains dynamics orthogonal ®oonly, should be a quickly
decaying function that is well-approximated at long tinhes
tm by Mia(t) &~ 2D4(t), for some microscopic timé, on the
order of the particleparticle collision time. Under such
circumstances, eq 7 is local in time, i.&1(t) = (M5, + D)

these pairs can be permuted, so as to avoid overcounting. Also,G,(t). Unfortunately, in most cases, the correlation function of
for this summation to always be well-defined, the wave vectors the dissipative forceps(t) is not a quickly decaying function

will be summed up to a cutof., thus includingM = O(N)
wave vectors.

o By definition, Kos = [@Q Q}D while K~1 is the inverse of
this object with respect to thex™ product.

As the definition ofQ, containsKy, for all m < n, which
are defined using th&Qm<n, the above definition of the
multilinear basis is really recursive. Note thatkag, = 0 if n
Z m, the above set is orthogonal in mode ord&fy, = [QnQm[]
=0unlessn=m.

We note also thalN;(k=0) = (explik-ri] — dko)lk=0 = O.
This implies thatm;(0, t)Ni(0)J= 0 and, more importantly,
that the elementf), which have aN; component with zero
wave vector have to be omitted from the set to avoid an
overcomplete basis.

B. Single Time Interval Correlations. Let all time correla-
tion functions of the slow (linear) variables be taken together
into the matrix

Gua(t) = [Qy(t) Qi Ky, (4)

Note thatGy; is wave vector dependent, but that this is not
explicitly denoted here.
To make contact with other versions of mode-coupling theory,

we first examine the consequences of taking only the linear basis

Qi into account. The time evolution @, is given by eq 1. In
differential form, this means

QM) =LQt)=€"LQ,

Defining the linear projection operator

(®)

P,C=[C Qlk K1171 * Qq

and its complemenpf = 1 — P4, and using a well-known

operator identity, eq 5 can be cast in the form of a generalized

Langevin equation

Q) = ME * Qi) + Myt — 7) % Qu(0) dr + ()

in which a fluctuating force &i(t) = ePEL‘PEL Q., a static
vertex Mi; = QL Qi) Qik Ky;~%, and amemory kernel i(t)

— [@a(t) @;0x Kq1~! appear. By taking the inner product
with Q1, eq 6 yields

Gyy(t) = Mf; % Gyy() + jg Myt = 7) % Gyy(v) dr (7)

It should be noted that because of translational symmetry,
the sum of wave vectors in an average has to add up to zero.

Thus, Gy involves only one wave vector, instead of two.
Likewise, the above equation is an equation involving just one

but instead has long time taifs8 due to the fact that the linear
projection operatop? does not remove the nonlinear depen-
dence ofp(t) on the set of slow variabld® Hence, one is forced
to use the full multilinear basis if equations of motion are to be
local in time.

In the following, Q will denote the vector composed of all
Q.. As Q is still a phase space function, its time evolution is
governed by

Q) =L Q)
Using the multilinear projection operator
PC=[C QKK xQ

(where the %” now also denotes a sum over mode orders) and
its complemeniP™ = 1 — P, an equation analogous to eq 7 is
found

G =M=« G + [[M’(t— 1)+ G@) dr  (8)
whereG(t) is the full propagator defined by
G(t) = () Q* Tk K™ (9)
the fluctuating force is defined by
o) =" "PL Q (10)

and the vertexe®F and MP(t) are given by

M® =L Q}Q* kK™
MP(t) = —[g(t) g* Dk K*

Note that the original goal of evaluating;(t) now becomes
to calculate the 21 (or linear-linear) sub-block of5(t) while
Goa(t) = Guo(t) = Oqo is trivial.

Now that all powers o8 are projected out of the dynamics,
one expect® to be truly fast, and its correlation function to be
approximately & function. Defining the dissipative vertex as

MP = [“M°(t) dt
and the full vertex to be
M = ME + MP (11)
we can write

G(t) = M * G(t) (12)

wave vector. In this sense, there is no mode-coupling in the as an approximation to eq 8.
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A physical note is in order here: it is assumed that there is wave vector sets that none of them should be equal. In the same
a separation of time scales, such that there are fast correlationpaper, it was shown that that these full diagonal multilinear

which decay on the short microscopic scaje while the

interesting long time behavior occurs on slow, “hydrodynamic”

scalest,, and we assumg, < t,. Equation 12 describes just

the slow part, so it is valid only after a time (much) larger than

tm with corrections of orde©O(t/th).
It is useful to perform a Laplace transform:

G(@ = [, e G dt

With the initial conditionG,s(t=0) = 14 (the unit matrix in

infinite dimensions), eq 12 can be solved formally in Laplace

space,
G@)=[z—M]*

where the inverse is to be taken with respect to #igfoduct.

By splitting up the matrixMyg into its part diagonal in wave
vectorsMd (i.e., the wave vectors ia andg are pairwise equal)
and an off-diagonal remaindev]° = M — M¢, one can write

G@=[z—-M'—=MY =G x[1 - M°G°2]* (13)

where the bare, mode-order diagonal propag@tvis defined
as

G'@=[z—Mq*?

Because the wave vectors inand have to pair up in\Agﬂ,
the numbers of wave vectofa| and || need to be equal as
well, i.e., M4 andGY are also diagonal in mode ordé&s°(7) at
a particular mode-order is denoted a@ﬁ(z).

The inverse in eq 13 can be expanded to yield

G(2) = G2 + G2 x M°x G°(2) +
G(2) % M° % G°(2) x M° x G°(2) + ... (14)

The 1-1 element ofG(2) can be written in terms of gelf-
energythat is defined as

22 = T M« G2 « M2, +

n=

ZZM; s G2(2) % M2, % Go(2) % M%, + ... (15)
n=2m=

Note that the summations start at mode-order 2. After re-

summing eq 15G11(2) is related toZ(z) by

G =I[z—My; — 2(Z)]_l (16)

propagators factor in the thermodynamic limit into products of
full linear—linear propagators. As a result, eqs 15 and 16
combine to a self-consistent equation 81;(2). It should be
noted that although the formalism assumes the diagonal mode
orderandwave vector multiple-point correlation functions factor
into products of full linearlinear correlation functions, this
factorizationis not equivalent to assuming that the basis set
variables behave as Gaussian random variables. The factoriza-
tion here occurs only for fully “diagonal” wave vector indices,
and off-diagonal components of a multiple-point functions are
included through mode-coupling expressions. For example, the
off-diagonal part ofGya(k — g, g;k — o, g';t) with g = g and

k — q = ( is represented by the series in Laplace space

Gk — 0, Gk — q, q', 2) = Ghy(k — q, GIMZ(k —
9.qk—d,q)Gk—0,q,2 + ... (18)

It can be shown that corrections to the factorization of the fully
diagonal multiple-point correlation functions vanish in the
thermodynamic limit provided the (time-dependent) dynamical
correlation length is nonextensive. These results rely on the
N-ordering technique, which will be discussed in detail in section
.

C. Multiple-Point Correlations. In ref 15, the function$s-

(t) with either|a or |3 bigger than one were called multiple-
point correlation functions because they can be seen as Fourier
transforms of correlation function of densities involving more
than one relative position. Note that|d| = |8| andthe wave
vectors ino. andg are fully (pairwise) matchedsg is the full
propagator at mode-ordgx|, and this propagator can be written

as a product of full-linear propagators to an excellent ap-
proximation. However, even when the wave vectors are not fully
matched G is still an interesting but nontrivial quantity.

The expression for the multiple-point correlation functions
follows from the general form in eq 14. The form of the equation
is identical to the case of just collective densities that was treated
in ref 15 (section 11.D). By performing the same re-summations,
which rely on theN-ordering method to be discussed shortly,
one obtains the result of eq 26 of that paper:

Gys = GygOup T Gy * M?‘,ﬁ, * G+
Gy * Mgy * Gy % Mg 5 Gyt ... (19)

Here, primed Greek indices have the same wave vectors as their
unprimed variants, but not necessarily the same component
indices, i.e., they are fully diagonal in wave vector. Thus,
GuwOwp denotes the full diagonal in wave vector of the

This result can be compared to the solution in Laplace space ofPropagator at mode-ordgx|. Furthermore, there is a restriction

eq 7,Gn(t) = [z — M, — M(2] 2. Thus, the self-energy is
related to the memory kernel by

M@ = M3, + 2(2) (17)
Since MY, is short-lived, the long time tails of the memory
function are due to mode-coupling effects(z).

It was shown by Schofield and Oppenhétnthat in the
thermodynamic limit, the series for the self-energy ¥can

on the summation that none of the intermediate wave vector
sets are equal, which in contrast to the notation in ref 15 is not
denoted explicitly here.

Equation 19 expresses the multiple-point correlation function
in terms of the full propagators, which can be expressed in terms
of the full linear-linear propagators. By using-ordering (see
section Ill), one can show that contributions in eq 19 involving
Gn(2 with n < |of and n < |3]| are negligible in the
thermodynamic limit.

be re-summed, with the result that all bare propagators in eq D. Multiple-Time Correlations. The results above consider
15 are replaced by propagators that are completely diagonal inonly correlation functions that contain a single time interval.
wave vector, but with the restriction of the sum over intermediate However, the case of correlation functions of several time
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intervals, which in general will be denoted (following ref 15) the relative importance of terms appearing in the series. In such

by (31((3) gty taeg, e t) OF an approach, the series must be analyzed so that simple but
accurate approximations for the entire series can be formulated
Ergl}({t}) = IZ(D Q. (tl—i- ) Qonl(tl)Dk Kao%_l in a (preferably) controlled fashion. THé-ordering method,
developed by Oppenheim and co-workéf@ as an extension
is of considerable interest. of Van Kampen's system size expansiSnallows such an

Even very straightforward approaches to multiple-time cor- approach for correlation functions on the hydrodynamic length
relation functions lead to expressions involving multiple-time  scale in systems of moderate density removed from any critical
correlations of the fluctuating force. Such correlation functions point. In the N-ordering approach, one assigns a factomMof
are generally nontrivial as they are not always fast decadfing. (the number or average number of particles) to any cumulant
The essential ingredient in deriving mode-coupling expressions of multilinear densities based on the assumption that the each
for multiple-time correlation functions, as remarked in ref 15, cumulant containing linear densities scales with the system
is that ‘in a correlation function imolving fluctuating forces, size asN(&/a)31), where& is the correlation length of the
the function decays quickly in a pair of time argumentsyjated system anda is the average distance between particles. As
these are well-separated in timi¢lere, “well-separated” means  shown in ref 19, thé\-order of an arbitrary correlation function
having a time separation much larger than the microscopic time of basis function&s, = [QsQ,Jdepends on the nature of the
scalety on which [¢(t) ¢*Odecays. For correlation functions  densities and the number of matched wave vectors in the sets
of collective densities, this argument led to the conclusion that o andé. The subscripts like
a correlation function involving several time argumentghose
time evolution arises through the fast evolution operators exp- o = {A;(K = d; = ... = y—1), By(thy), -, Bjg—1(0e| — 1)}
[PULt] can be considered fast-decaying in each of the tithes
provided all times are positive, larger thigpand the evolution ~ denote sets of wave vector-dependent densities, whereBeach
operators are applied in succession. When these properties holdis a component of the set of collective slow variable defined in
all effective times (such af, t; + t, t; + t; + t3, etc.) are eq 2 andA is a component of the extended linear basisfset
well-separated and the quoted criterion applies. If the componenA in the seta is a single particle density, we

On a formal level, the arguments invoked in ref 15 to derive denote the corresponding multilinear density by a superscript
expressions for multiple-time correlation functions of collective s, Q; if this component is a collective density, then the
densities apply equally well when tagged particle densities are dynamical variable is represented . In ref 19, it was
included in the slow basis set. Thus, by using projection operator demonstrated that the leadiNgorder terms arise from matching
techniques, the foIIowing relation can be established: as many wave vectors as possible in the setndd, yielding

G0 tn ) the following estimates foKg,
Gl {t}) = Gy plth = Mg, (T, 7y) X

cc NI cs __ njlod—1
G (tn 1~ Ty, b, ...) dr dr, + fast term int, Koo ~ N7 Ko ~N
sc _ nlod—1 ss |a|—1
where Koo ~ N Koo ~ N (23)
_ xpe  —1 where for example, the superscrigs* denotes that both sets
Mos(T,71) = 41Q4Q, Q5K "0(7)o(ry)  (20a) & anda contain a single particle density. More importantly, it
—EQEerL“PD%(r)Q K;) (20b) was also demonstrated that tNeorder of K3;, ~ NI%/~1 only
when the single particle densities are in the same matched set,
In the limit of long times where; > t, the fast term can be  and theN-order drops by a factor df when the wave vectors
neglected and the integrand can be replaced Byfanction of the single particle densities do not match.
according to the above criterion, yielding an equation that is  For the inverse oK, the N ordering in eq 23 implies
local in t, (K ~ N7 (K0 ~ N
oo oo
G (ty )= Gy plt) ¥ Mgy 5 G (t ) (21) ) o )
” (K e~ N (K5 ~ N (24)
where Myop = [5 dr1 5 dr Mege(z, 71). Different from the
single time correlations of sections IIB and IIC, where including When considering thBl order of an expression that contains
Qo was of little practical consequence, for the multiple-time the “¢” product, one needs to separately consider its order in
correlations here it may happen thator || is zero. For these M (the number of wave vectors summed over, see the seventh

special caseﬂ.\_/l/;aa are given byMgao = Kgek andMogs = Las. point at the end of section 11A). That is, when th€' ‘product
The recursion relation in eq 21 can be applied as many timesis between multiindices of ordey, one has in principles — 1
as necessary to yield a relation betwe®f? and G®. For sums over wave vectors and thus an effective factomoft
instance, fom = 2 andn = 3: (one loses one sum over a wave vector because by translation
_ symmetry all wave vectors have to add up to zero inside an
G4ty ty) = Gyy(ty) * My, % Gyy(ty) average). AlthoughV is of orderN, these orders oM are
@ _ _ counted separately from tiNordering, for the following good
Gapyo(ta oy 1) = Goelts) * Mygg * Gy, (1)) ¥ M, % G, (ty) reason: For fluids of moderate density only a small fraction of
(22) the wave vectors in the sums really contributes significantly.

Therefore, rather than taking as counting the precise number
of wave vectors summed over, it makes more sense toNhake
as the number of wave vectors that contribute substantially to
To make the infinite series such as in eq 15 or in eq 21 the sum. This results in a small valueMflwhich is nonetheless
tractable, one must develop a systematic scheme for analyzingstill O(N)]. The O(1) parameteM/N is called the mode-coupling

Ill. N-Ordering Scheme for Tagged and Mixed
Correlations



21430 J. Phys. Chem. B, Vol. 109, No. 45, 2005 van Zon and Schofield

parameter. As stated, it is typically small (e.g., 3)0for fluids ficients is essential in the derivation of observed relations

of moderate density and away from any critical point. between quantities such as the self-diffusion coefficient of a
To illustrate this, consider for instane&€; * K55 which is Brownian particle and the viscosity of the fluig24.25

seen to have am-ordering of O(N%). There is a possible B. N-Ordering of Higher-Order Vertexes and Correlation

summation oveM wave vectors irk$$ « K55, but in fact the Functions. The analysis of theN-ordering of higher-order
leading order estimate dd(N%) requires a matching of wave  Vertexes involving mixed tagged and collective particle densities
vectors which gets rid of the factdd. As a result, the leading ~ follows by induction as outlined in ref 15. Using theordering
term of K x K is just O(N%), with (possible) correction ~ results for the single time interval correlation functions and the
terms of orderO(MN?), which compared to the leading term  relation between the single-time interval correlation functions
are of relative ordeM/N, i.e., of the mode coupling parameter. and the multiple-time correlation functions in eq 22, one obtains
In general, for any expression one can determine the valuesthe following N-order in the maximally matched form of the
of mandn such that it is of orde®(M™N") = O((M/N)™N"-m), higher order vertexes in which the central index is a linear tagged
If m > n, such an expression vanishes in the thermodynamic density:
limit N — . Below, when adding expressions of differévit

and N order, expressions which vanish (relatively) in the OIN©O™My ify <o
thermodynamic limit will be omitted. The remaining terms with MCSC = ~1 if v =
f . y10 O(N ) my 0

the smallest power dfI/N (typical (M/N)°) will be referred to ify >0
as theleading N-order termand the terms of one power higher O(NO) iy
in M/N will be called theleading correction termsr thefirst e G—rh
mode-coupling corrections O(N My ify <o

A. N-Ordering of Single Time Interval Correlation Func- _i?ig = O(Nfl) ify=9

tions. Using these principles, it was shotfithat theN-orders
of the (multilinear) vertexes in eq 11 (in their maximally
matched form) are

O(N°) ify>0

gess — | OO ity <0

M3 o if >0
el _[onn ey its < p ™) ’

Bl = . _
MES O(N°) if 6= S35 = O(M%5)

sc _ N L Ss
Mg =N O(Méﬁ Furthermore, the higher order propagat8ys; obey the same

Following these lines of analysis, the matikin eq 11 and N-ordering rules as the higher-order vertexes, namely

the normalized single-time interval correlation functions in eq

9 arel® in terms ofNys = QL Qu} Q30— /5 dt [pa(t) @50 G2 = OMy15) (26)
M = NS % Kgcfl[l + O(N’l)] Using these results, we see that the two-time interval tagged
b of = PE particle correlation function (with time intervalg and t)
ffﬂ = (31% % K[%;_l[l +O(N Y] reduces to a particularly simple form to leadiNgorder:
(@ =2 M@y, Gt ) = [k — 0., + L)@, t) Q(K)*D
w(@ =[2— M2, (25) = Gi(L)MI; Gi(t) + O(N ™) 27)

from which we see that single particle modes do not contribute with leading order correction terms

to the dynamics of single time interval correlation functions of

the collective modes. Similarly, since the superscrisis Mss GS(L)MESGSS(t,) + GS(L)MSSGSS(t,) +

in eq 25 only mean that one of the components in the each of S SSS SS

the indices oMsshas a single particle character while the others Gri(t)M115G2(t) (28)

are collective, the collective modes do influence the dynamics

of correlation functions of tagged (single) particle densities where Gi3(t) and G33(t) are higher-order, single time interval

through mode-coupling corrections to transport coefficients. For correlation functions. Note that in eqs 27 and 28, the matrix

instance, the generalized self-diffusion coefficiék, t) is indices as well as sums over repeated intermediate wave vectors,

renormalized through the terms in eq 15 with the bare propagatoras more fully indicated in eq 22, have been suppressed for

replaced by the full one (see the discussion below eq 17), i.e., notational simplicity. Given the definition &fl112in eq 20, one
sees that only the second, dissipative term in 20b contributes,

D(k, t) = DB(k, t) + =k, t) which isO(ko?). Thus, the first term in eq 30 is, in orderslef
s _ ss ) ) the leading correction term, while the others @?).
=k, ) = ZM12(N1(k)’ Ny(k —q), Bi(a)) Fy(k — a;t) x For the three-time interval correlation function, the leading

i1
Gra(Bi(a); B(a);t) M33(Ny(k — ), Bi(a); Ny(k)) + ...
3) — (Ss " /1SS \ 1SS (=SS
whereDB = M3 is the “bare” diffusion coefficient with weak iy b b) = CraltdMi1dC0o()MouGralty) +

k andt dependence anBi(k, t) = Ry(k, Ri(k)Cis the self- Gi(t)MITGH(LMITGEI(t) (29)
part of the dynamic structure factor. Careful analysis of the
mode-coupling contributions to tagged particle transport coef- with the following three terms contributing at the order of the

N-order contribution is
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first mode-coupling corrections: k is independent df-Aro;, and hence the three-time correlation
function factors to

Gty M333 Goa(t)MIS GE(ty) +
Ghi(t)M333 GiLIMES G3(ty) +
GItIMS3; G(LM333 G3(ty) + O(ky) (30)

Fa(Atgy, Atyy) = [ (t, t) I (8, )01
= Fyk, Atg)Fy(k, Aty,) (33)

which suggests defining an indicator function for homogeneous
The O(ke?) correction here in fact consists of seven more dynamics
correction terms, all variants of the for@ix(ts)M211Gua(to)- "
M11:Ga1(tz) and all O(ke?). F3™(K, Atyy, Atyy) = Fy(Atgy, Aty,) —

Fy(k, At Fyk, At;) (34)

IV. Applications of Higher Order Correlation Functions
that vanishes in the homogeneous limit. On the other hand, in
the case of purely heterogeneous dynamics, consider the
indicatof3

It is often difficult using single time-interval correlation
functions to discern what features of the underlying collective
dynamics of slowly relaxing systems leads to qualitative features

in the relaxation profile in glassy and frustrated systems. phetp At At ) = F(k. At.. + At..) — Fo(At... At
Typically, single time-interval correlation functions in frustrated 3t + Aloy Al) (k. Atyg 12 (Alor Aly)

systems display nonexponential time decay, often exhibiting a = —[Sin(k-Ar,) sin(k-Ar,,)0 (35)
two-step relaxation processes associated with caging effects and
cooperative flow through heterogeneous dynafi€sn long where the last equality was obtained by writing out the filter

time scales. Given the heterogeneous nature of the dynamicdunctionsf (to, t1) in the definition of Fs and F3 in complex

in such systems, it is natural to ask whgpe of relaxation representation. Since the direction of the motion in subsequent

processes lead to this nonexponential time signature. time intervals is not correlated in the heterogeneous limit, the
In a series of article$12-14 Heuer and co-workers have right-hand side of eq 35 vanishes. Note that both indicator

examined the information content of higher-order correlation functions make use of the three-time correlation function of the

functions to assess how detailed features of the dynamicstagged particle density and can be expressed in terms the

correspond to aspects of the relaxation in glassy systems. Inmultiple-time propagators of the previous section as

particular, Heuer et al. have focused on multiple-time correlation

functions designed to probrelaxation typé14 as well asrate Fa(k, Atgy,Aty,) = lFs(k,AtOl + Aty,) +

memory? associated with the persistence of slow particle motion 2

linmséuggrrrc;g:%i I;qmd systems. The basic idea of the multiple %D‘ill(k, t, + t, + )Ny (= 2K, t, + t,) Ny(k, t)*0(36)

pproach is to examine correlations of particle

motion over several time intervals, separating out distance and

directional correlatiod? In this fashion, one effectively devises

time filters that extract a particular feature of the dynamics to

be analyzed. The fundamental building block of the time

correlation functions is the (real part of) tagged particle density

at time intervalAty; = t; — to defined to be

where the second term on the right-hand side is a special case
of the more general propag:]at@[ﬁ)l in eq 27 defined witlg =
—2k andt, = 0 and the tagged particle densities corresponding
to the number density. Both measures of relaxation type have
been successfully testdon simple 1-dimensional model
systems in which the dynamical rules governing motion of a
_ . . _ ) particle are constructed to be inherently heterogeneous (an
F(to t) = coske(r(ty) — r () = cosk-Arey) ensemble of particles each moving with constant but different
= RN (K, t.)% (K, t 31 jump rates) or homogeneous (a collection of particles in which
Ny, ta(k, 1)) (31) particles hop between sites with two different site-dependent

. . . __rates).
whose ensemble average gives the incoherent scattering function As)the functionf (t
Fo(k,Atos). Intuitively, Fs(k,At) measures the fraction of particles .
moving a distance less tham/k over the time interval\t, and As an alternative t&="" and E™ in studying the heteroge-
3 3

hencef (to, t2) can be viewed as a time-filter selecting out slowly neous nature of the dynamics, one can then examine examine
moving particlgs. The essentiall idea in identifyjng the relaxation how long particles that are initially in the slow-dynamics
type is to consider how t.he motion of slow particles is correlated ensemble remain in this ensemble to get an idea of how long
over sgbsequent time mterval;. In the purely he_terogeneoussolid”ke domains persist in supercooled and glassy systems.
scenario, one expects that motion in subsequent t|me.|ntervaIsSuch filters are also useful to try to rigorously map deterministic
has no direction dependence (no back-and-forth motion). On

the other hand, for the purely homogeneous scenario, one rule systems onto simplified models of glassy behavior, such as
out a distance de englencg in su%se Lent time intervals tgfacilitated spin modeld’~32 A suitable measure of the lifetime

P . qu - of solidlike domains can be defined by constructing the four-
exclude the presence of different mobilities. To characterize

these limits, it is helpful to define the three-time correlation time correlation function

t1) acts as a slow-dynamics filter, it can
be used as a means of selecting a subensemble of the full system.

s .
functiort Nty 1y, by t) = B (tg, t,)f (4, )0
Fa(Atyy, Aty = [ (to, t)f (ty, )0 = [B0SK-ATr ;) COSK-AT 501
= [GosK-Ar ) COSK-AT ;)] (32) Generally, it is sufficient to look at a time filter over a fixed

. periodAt = t; — tg = t3 — tp, where the waiting intervab =
In the homogeneous limit, the projected distakear;, along t1 + 7 between subsequent applications of the time filter. is
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For large waiting times, once expects that only a random functions for the indicator functions to leadifg-order are
selection of the particles initially in the slow-ensemble remain therefore
in the slow ensemble so th&@® — FyKk,At)2 ast — . It

therefore is logical to focus on the fluctuationfdfo, t;) defined MSSS = TN, (k — )Ny (@), (K)H O(k,D)
as
=1+ O(ky) (38)
C¥(AL, 7) = 0 (0,ADf (T + At,T + 2At)- F(k,At)? . . N -
(A0 = HOA 0= Flload) ME5 = Q3K — 0 — a4, G (@QSTK — a G
If At is chosen to be shorter than the inverse of the (typical) KSS *(k — oy, oy k — af, a) + O(ky)
relaxation rate of solidlike domains then the time scalat e ot
which this decays to zero can be interpreted as the domain = Ky3(dy) * Ki; (A0 o
relaxation time. 5
Note that this quantity is related to ti@&>),, expressed in = 0q,q T Oky) (39)

egs 29 and 30, via
where we have used the factorization propetties multiple-

@ _1 3 ® point correlation functions. In the equations abdgaepresents
CHALT) = 4[GK'KKK(At' T AD + Gl (AtT.AL + the largest wave vector present in the correlation function. The
(At, 7, AY)] — Fyk, Ab)? (37) static part of the multiple-point vertexgs,, and,, coming

from the time integral of 20a vanish sin€@§(k)Q3(k1) = Q3(k
wherex = {Ny(k)} andx’ = {Ny(—k)}. + ki) and [@Q; Q0= 0 by construction. The lowest-order

A. Calculation of Domain Relaxation Rate and Relaxation contribution in wave vector to these vertexes therefore comes
Type Indicators. Application of the mode-coupling theory of ~ from the time integral of 20b and S(ko?).
multiple-time correlation functions developed in section Il to 1. Relaxation TypeCombining these results with the leading
evaluate the domain relaxation rate via eq 37 or the relaxation N-order expansion terms &%, and insertion into the expres-
type indicators defined in eqs 34 and 35 requires complete sion for F3 in eq 36 yields
specification of the slow basis set variables. As the indicators
are of significant interest in dense supercooled liquids in which Fak, t,, t,) = l'FS(k’ Aty + Aty,) +
F<(k, t) exhibits nonexponential decay on molecular length 2
scales_, the reIeva_nt slow m_odes must describe the long-time 1,: (K, At )F (K, Aty) —i—ng“C(k, Aty,, At,) (40)
evolution of density fluctuations for wave vectdksear the 2° S 2
peak in the static structure factor. Clearly the dynamics at such me - . ) o
short length scales is outside the regime of hydrodynamic theory WhereFs™ is the first mode-coupling contribution . Note
for which one has a good idea of what constitutes the slow that from eq 28, we see the mode-coupling corrections involve
modes of the system. For dense systems, however, there is solidn€ €valuation of terms such as
evidence from the theory of hard sphere liqd#i®$ of the - -
existence of short-wave?/ength “collgctive" r?wodes that are ZGii(Nl(k); Ny(k — a)Bi(a); Aty,) *
significantly slower than other “kinetic” modes of the system. "¢ s .

These collective modes are generalizations of the hydrodynamic G,i(Ny(k — @)By(q); Ny(k); Atyy) (41)
tagged particle and heat density modes to finite wave vectors. ) )
The application of the mode-coupling theory outlined here to In eq 41, the sum extends over the three hydrodynamic collective
molecular length scales is challenging due to the difficulty in VvariablesBi(q) and G35, G37 denote the multiple-point mixed
evaluating the contribution of the fluctuating forags(t) tothe ~ tagged/collective correlation function

coupling vertexedMyg,, and requires new input from either ss /e -

kinetic theory or simulation. Work along these lines is in GANy(k); Ny(k — g)By(a); t) =

progress. N, (k, H)QSNi(k — g,q)ZmB,(q)B (q)T
To get a feeling of what the mode-coupling predictions of ik DQH O IR B ()

the correlation functions defingd above Iqok Iikg, we focus on provided the collective densities are orthogor(k)B: (k) =

a moderately dense system (in fact r_elatl\{ely dilute compare_d & Bi(K)B’ (k)T Similarly, Gy is defined as

to a glass) and examine these functions in the hydrodynamic

limit, as was done in ref 35. For such a system, it is sufficient ~ss/g 11 — R CE) —

to let the set of slow modes be composedyof the tagged p:’:’trti(:IeGZl(l\Il(k DB (@); Nk): ) = , .

number density fluctuation§;(k) and the collective hydrody- SMB(k — g, o; YNG(K) D (42)
namic densities, namely the number density fluctuatidy, . ) . )
the longitudinal momentum densi§i(k) = k-P(k), and the ~ Using the mode-order expansion eq 19, the multiple-point
orthogonalized energy density fluctuatidrék) (see ref 35 for ~ correlation functionG; can be approximately written as

the precise definitions of these variables for a hard sphere ) .

system). For this specific choice of basis set, the time-derivative GylBM(k — g, q; 1) = ﬁ, drF(k — g, t— 1) x

of the tagged particle number densigeshave a fluctuating BB, _ NiBiNyp, .

componenipy, (k, t) that contributes to th§y, vertex. How- JZGn (@, t = )Mk — a, 0; K)F((k,7) (43)
ever since the time derivative &f;(k) is proportional tok =
[k, one expects these “dissipative” contributions to be relatively with a similar expression foG;,. Note that in eq 43, there is
unimportant in the hydrodynamic limit compared to the non- an implicit sum over collective mode indgxIn practice, it is
dissipative couplings@; Q; Q30 K33~ The higher-order  often convenient to work in a basis set in which the matrix of
vertexes necessary to calculate the multiple-time correlation collective linear-linear (normalized) correlation functions is

G(3)

KiK'

(At, 7, At) + G&

K'kK'K
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diagonal.
choosing theB; set to be composed of the hydrodynamic sound
and heat modes.

Returning to the problem of calculating relaxation type,
inserting eq 42 into the definition of the indicator functions
yields

Fgontk Atyy, Aty)) = %[AFz(Ator Atyp) + F3m 1 (44)
1
Fget(ki Atyy, Aty)) = E[AFz(Ator Atyp) — Fsm 9 (45)

where

AF,(Atyy, Aty) = F(K, Aty + Aty,) —
F(k, Aty)F (K, At,,) (46)

In the hydrodynamic limit, ignoring mode-coupling effects, one

J. Phys. Chem. B, Vol. 109, No. 45, 20051433

In the hydrodynamic regime, this corresponds to leading order, one obtains the mode coupling result

C(At, 1) = Re(y Gi(Ny(k): Ny(k — 0)By(a); AD) x
1,9

F(a, 1)G;(d, 7) x
G3(Ny(k — a)B,(@); Ny(k); At)) + O(ky) (49)

where eq 43 may be used f@35 and G55

As this result already somewhat suggests, for dense, super-
cooled liquids, one anticipates that the conversion time of
solidlike domains to liquidlike domains of typical length scale
| ~ 27/k also occurs on time scales corresponding to the wave
vector-dependent-relaxation time ofFy(k, t).

B. Numerical Analysis of Multiple-Time Correlation
Functions of Tagged Densities in a Hard Sphere System.
To validate the mode-coupling theory approach to multiple-
time correlation functions of collective densities, extensive
simulations of a hard sphere system at moderate densities were

expects that an exponential decay of the intermediate scatteringcarried in ref 35. It is straightforward to extend these simulations

function of the formF¢(k, t)~exp(D|Kk|%), whereD is the self-
diffusion coefficient. In this casé\F, = 0 and both indicators
are approximately zero. On the other handFifk, t) has a
nontrivial relaxation profile, perhaps of the form of a stretched
exponentiaFgk, t)~exp[ — [t/z(k)]?} wheref is the stretching
exponent, themF, = 0. It is therefore evident that mode-

to incorporate calculations of tagged particle densities to test
the simple factorization result for multiple-time correlation
functions of the tagged particle number density in eq 47 and to
examine how well the theory predicts higher-point correlation
functions of mixed tagged/collective densities that are necessary
to compute the mode-coupling corrections to the leatlirayder

coupling effects are absolutely essential to distinguish betweenfactorization. All simulation results presented in this section were
homogeneous and heterogeneous types of nonexponentiabbtained using the simulation methodology described in detail

relaxation. Although this result is obvious since mode-coupling
must be invoked to give rise to nonexponential relaxation in
the first place, it is thalifferencein the time dependence of
AF; and the mode-coupling correctioR§*° that allows one to

in ref 35 on a hard sphere system of a relatively low reduced
densityp* = p/p. = 0.1, wherep. is the density at close packing.
The size of the periodic system was chosen to have cubic box
lengthsLy = Ly = Ly = 47.3361 such that the simulation system

distinguish between the two relaxation types. On the molecular containedN = 15 000 hard-sphere particles of mass= 1 and
scale, one also anticipates a contribution to these expressiongliametera = 1 at the chosen density. For this system size, the

from the dissipative part oMy; that corrects the simple
factorization result at lowegti-order

1(k gt + tz)N1(q tl)N (k)O~
Fyk — 0, t)Fy(K, t)[L + O(k,)] (47)

Note that the effect of these corrections is not to modify the

smallest dimensionless wave veckga = 2ra/lLy, = 0.132736

so that all quantities examined are roughly in the hydrodynamic
regime. For this system, the mean collision time calculated from
Enskog theor$f is approximatelyte = 1.42417 at an inverse
temperaturgg = 3, while the mean-free pathlis= 1.85561 so
that kole = 0.246305. Under these conditions, the estimated
relaxation time ofFg(ko, t) is 7(ko) ~ (Dko?)~1 ~ 55, whereD

= 0.725586 is the self-diffusion coefficient calculated from the

time behavior but to modify the wave vector dependence on gpskog theory result

the right-hand side of eq 47. This modification only makes sense

whent; andt; are large compared to the microscopic relaxation
time t, corresponding to the time scale after which the
instantaneous approximation implicit in eq 21 is valid.

2. Domain RelaxationThe rate of domain relaxation can be
similarly calculated using th&l-ordering scheme to simplify
the multiple-time correlation functions in eq 37. Using the form
of the higher-order vertexes in the hydrodynamic limit &g
=1, G33(Ny(k = 0); Ny(k = 0);7) = 0, andG33(Ny(k); Na(k);

At) = Fyk,At), one obtains

G® (At 7, At) ~ F(k, A)F (K, At) (48)

The same holds for the other four time correlations in eq 37,

8V pmrg(a)a’

wherews = 1.01896 andj(a) is the radial distribution function
at contact. For a hard-sphere syste(a) can be estimated using
the CarnahanStarling equation of statéand the expression
for the pressure of a hard-sphere system

R A R
p -’

whereb = 27a%3 and# = mpa%6. The simulations were run
for at total time of approximately 120ffko) to ensure reasonably

(50)

(51)

therefore the leading orders of the multiple-time correlations good statistics. Following ref 35, statistical uncertainties were
are canceled by the last term in eq 37, so that to leading orderestimated using the symmetry properties of the correlation

C@(At,7) is zero. The first nonzero contribution arises at first

functions. In this approach, the statistical uncertainty for a real

mode-coupling order, as given by eq 30. However, the terms correlation function was constructed from a histogram of the

in that equation that involve&,:(Ny(q), Bi(—q); Ny(0); t) are
zero becausél;(0) = 0. Thus, only the last term from eq 30
survives. Taking together the contributions from the four higher-
order terms in eq 37 and using the fact t&} factorizes to

values of the imaginary part of the complex correlation function,
which vanishes on average, to determine the 96% confidence
intervals. To simplify the comparison between theoretical
predictions and the simulation results, all wave vectors were
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Figure 1. Comparison of the multiple-time correlation functigf?,

the factored forng{® and their difference as a function of wave vector

pair (m, n) and time cross-sectiony{ t;). The left-hand side panels

contain the simulation results fgf (unconnected symbols) arg

(lines), and the right-hand side panels contain ploig@f- gﬁz). In all
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point correlation function
23Rk — A)N(@); Ny(k); ) =
Sa)

M,k — a, O, ORI O T oFdlk, 9 (52)

whereS(q) = IN(q)N*(q)Lis the static structure factor, against

direct numerical calculation (note: in eq 52 we took the
thermodynamic limit). From eq 43, we see that this correlation
function is approximately given by

Gk —q,q:t) = [ dr Fk —q,t— 1)
GYP(g, t — YMYFN(k — g, g; K)Fy(k, ) (53)

whereB; runs over the sefN, P;, H} or some variant of it.
Note that with this choice of collective densities, the computation
of eq 53 requires the calculation of 3 coupling vertexes
MY MBIPEN and MM as well as the input of the
collective linear-linear time correlation function§)}, G)Y,

and G In principle, analytical forms of theGy; time

panels, the unconnected dots, crosses and triangles correspond to thg0rrelation functions can be utilized in the hydrodynamic regime

simulation results for time cross sectiorts t, (3t, t), and ¢, 3t),

with transport coefficients either fitted from simulation data or

respectively. The results in the top, middle and bottom rows are for taken from kinetic theory. Given the simplicity and ease of

wave vector sets (1, 2), (1, 3), and (2, 1), respectively. For clarity in numerically calculating th&;; with excellent precision, we have
the figures, the 96% confidence intervals, estimated to be roughly 0.002, chosen to evaluate the convolution integrals in eq 53 by

have been omitted.

taken to be collinear so th&t-q = kqg. To further improve

statistics, the wave vectors were independently taken along th

three principal directiong, §, and Z of the cubic simulation
box and averaged.

1. Two Time-Interal Correlation FunctionOne of the central
results of section 4, the simple factorization of multiple-time

correlation functions of the tagged particle number density (see

eq 49) is simple to verify numerically. To validate this
prediction, numerical calculations of the correlation function
gd(ty, tp) = Ma(k — q, t1 + t2)Ny(q, t2)Ni(k)Dwere computed
as a function of wave vector combinatiomsq) = (m, n)ko for

m andn values ranging from 1 to 3 witim = n. To simplify
the comparisons, three different time cross sectiond,jf for
each pair ifn, n) were calculated, namely, (), (t, 3t) and (3,

t). These particular choices af andt, are the simplest to

€,

numerically integrating simulation data using a version of
Simpson’s rule that allows interpolation of data. From time-
inversion symmetryM5, = 0 for Bj= N or H, and it is evident
that the only coupling at “Euler” order arises f& = P,.
However, as noted for the case of multiple-point correlation
functions of purely collective densities in ref 35, the inclusion
of the additional couplings t&l andH arising at “dissipative”
orderM?1 is essential if quantitatively accurate predictions are
desired. It may appear at first glance that the dissipative
contributions are negligible in the limit of small wave vectors
since they introduce additional factorslef In fact the overall
order of the multiple-point correlation functions is determined
by a wave vector-dependent prefactor multiplied by the con-
volution of the two-point, single time interval correlation
functions G;1. The time convolution of these correlation
functions can give rise to additional factors of wave vector
depending on their symmetry properties, so that the overall

implement when simulation data is stored in standard linear array conribution of theP, andN or H coupling are comparable in
data structures. The results, shown in Figure 1, show that themagnitude.

productg® = Fgk — q, ty)F«k, t1) approximatesy®(ts, t,)
very well for all choices of wave vector combinations and all

The evaluation of the dissipative contribution to coupling
vertexesMy:"™ and MyI"™ requires external input. In the

time cross sections. However, given that the statistical uncer- Appendix, these vertexes are evaluated in the small wave vector

tainties for bothg® and g are on the order of 0.002, it is

limit by relating the dissipative vertexes to the Enskog self-

clear that the numerical results indicate a small but systematic diffusion coefficient and its derivatives with respect to thermo-
difference between these two quantities which reaches adynamic parameters. The predictions are therefore free of any

maximum a short times~ 5te, as can be seen in the panels on
the right-hand side of Figure 1.

adjustable parameters and constitute a rigorous test of the mode-
coupling theory. The results of the comparison are shown in

This difference should be well-reproduced by the mode- Figure 2.

coupling correction term in eq 41, although this has not yet

been verified.
2. Multiple-Point Correlation Function.Although it is

Note that although the data are a bit noisy, the theoretical
predictions generally fall within the confidence intervals of the
simulated data except at very short times-(2tg) where one

certainly possible to calculate the leading order mode-coupling expects the theory to break down due to the instantaneous
correction term in eq 41 analytically using hydrodynamic forms approximation of the coupling vertexes.

for the collective correlation functior{(t), the calculation is
tedious due to the sum over different collective modBas
However, to validate the applicability of the mode-coupling
theory in the calculation of the first order correction terfjs,

we examine the quality of the predicted form of the multiple-

V. Summary

In this paper, a mode-coupling theory was presented in which
multiple point and multiple-time correlation functions for
collective densities and tagged particle densities are expressed
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(=]

' ' 020 ' ' ' collective particle density multiple-point correlation functions
designed to probe detailed aspects of the relaxation profile of
glassy systems.

The mode-coupling theory outlined here is the first step
toward a fully microscopic theory applicable to molecular length
scales that enables one to analyze the mapping of the dynamics
in deterministic glassy systems to stochastic spin model of
glasses, as well as to define subensembles via filters based on
dynamical and spatial properties to probe dynamic heteroge-
neities, clustering properties and many other aspects of the
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Appendix: Evaluation of the Mode-Coupling Vertexes

in terms of ordinary two-point, single-time interval correlation
functions and a set of vertexes. The theory developed here doe%
not assume thgt f_Iuctuatlng forces (nmse) are Gaussian _dlstrlb-of the multiple-time correlation functioRia(ts, t) areMgiP“Nl,
uted and, in principle, does not require an ansatz to obtain self-,lelN;N1 dMNVHNL ok th I f f th HBASS
consistent equations. Furthermore, unlike kinetic theories, itis .” 21 andip; © 7, where the general form ot the ver Mél
not restricted to low densities and should be applicable to dense'®
fluids where cooperative motions of particles and collective
modes are important.

The formalism is based on projection operator techniques,

As mentioned in the main text, the vertexes required for the
alculation of the mode-coupling correction to the factorization

ss _ pgEss Dss
217 M21 + M21

Ess__ X -1
which, for ordinary two-point, single-time correlation functions, M= Q5 QK (A1)
lead to a generalized Langevin equation in which the memory Dss " s v ss_1
function decays on a microscopic time scale (eq 6). The simple Mor°= — [7 dr [@3(r)ei K3 (A.2)

extension of the projection operator formalism to multiple-time

correlation functions of tagged particle densities is complicated where Mgl is referred to as the “Euler” contribution to the
by the fact that the fluctuating forces appearing in the general- yertex, MY, is the “dissipative” part of the vertex, ang(t) is
ized Langevin equation do not obey Gaussian statistics. the fluctuating force defined in eq 10.

Furthermore, multiple-time correlations of the fluctuating force Examining first the Euler contributionMEfS, we note that
can in fact have a slow decay when the time arguments of these_; S NST— _ ST (VS

forces become comparable. To treat multiple-time correlation sincell.Q, QU [@Q,LQT L] we have

functions of fluctuating forces properly, the correlation functions , ,Ess 1 _ R —

were manipulated so that the time arguments of all fluctuating M21 TNy (k — Q)B(a); N_l(k)) N

forces appearing in the correlations were guaranteed to be well- L@Z(Nl(k —q), B@)Pi(k)Ek (A.3)
separated, ensuring that all memory functions which arise in m

the mode-coupling theory decay to zero on a molecular time . . .
scale. This construction allows equations which are local in time From the tlme-reversaIESssymmetry properties of the correlation
to be obtained which relate the multiple-time correlation function functions, we see thatl;;”= 0 for B = N andB = H, and for
to two-time but multiple-point correlations coupled by es- B = P, we find

sentially time-independent vertexes. These expressions, in turn, R ) ikd

can be written as convolutions of two-point, single time interval ME3IN,(k — q)P,(q); Ny(k)) = g (A.4)
“propagators” coupled by time-independent vertexes. These B

propagators can either be taken directly from experiment,
simulation, or can be solved self-consistently within the mode-
coupling formalism. The vertexes, which are composed of a
static part (Euler term) and a generalized transport coefficient
can similarly be calculated from kinetic theory or taken from
molecular dynamics and Monte Carlo simulations.

The equations for higher-order correlation functions contain
an infinite sum of terms which can be made tractable for systems
with a finite correlation length by applying a cumulant expansion
technique pioneered by Oppenheim and co-wotRétg2termed
the N-ordering method. The method was applied to obtain the
leading order and first mode-coupling corrections of expressions
for tagged-particle density multiple-time and mixed tagged/ Pk —a,0;0) = éPDLtPDLQz(k —q,q)

Evaluation of the dissipative vertexéds:® requires the
calculation of the lineag; and bi-linearg, fluctuating forces.
For the linear fluctuating force, we have (in the thermodynamic
" limit)

@ik, t) = € PILN (K)
= & 1P, (k)k/m (A.5)

and the bi-linear fluctuating force is
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whereP" is a projection operator that projects onto a subspace
orthogonal to that spanned by the multilinear basis Get
Noting that (in the thermodynamic limit)

S0

Q(Ny(k — q)P(@)) = Ny(k — q)P,(a)
QB(Ny(k — )H(@)) = Ny(k — aq)H(q)

and P'Ny(k — q)P(q) = 0, we see that, at= 0, the bilinear
fluctuating forces are

QN (k — a)N(@)) = Ny(k — a)N(q) —

(A.6)

N A i(k — N
@3(Ny(k — q)N(a)) = %‘Pl(k — g)N(a) —
q) ik
mmpl(k)
ik —q)

a(Na(k — Q)Py(a)) = =———-P"Py(k — a)P(q)q +
PR, (k — Q)LP()q

Doy - (@) +

gaNy(k — q)H(@) ==

PNy (k — g)LH(q)

Inserting these results into the expressions for the dissipative

vertexes and expanding the resulting expressions in powers of

the base wave vectd, one finds

_ k= N AGANES

m?
=)
MmN

M = O(ky)

SSNIN;N;
M21 -

- dr Py(2)PTH O(ky)

MESNFN: — %f: dr [P}(r)PHO—
K9 1 dr G, )Py Ofks)

where we have defineit)-jn(q) = —Zﬁ/«/é PYLE(q). Noting
that the Green-Kubo expression for the self-diffusion coefficient
neD = /5 dt P}(t)P0and that ANC= dIAD(Bu) and AE=
—d[Aop, whereu is the chemical potential of the system,
allows us to write

MESNNMN: — ¢ — q).k(%)ﬂ + %%Dkz + O(ky?)
MESNHN — %{3(%)/} + Zﬁ(%)ﬁﬂ -

K9 1 dr G, (o)Py - Ofk)

The dissipative vertexM3;¥™"™ contains a new transport
coefficient fy dr [u(r)P.0which could, in principle, be

evaluated by doing a short-time expansion or using uncorrelated

collisions in a kinetic theory. Nonetheless, we expect this
contribution to be very small sindgy(z)PLis strictly zero due

to the projection operatd. In the numerical work in the main
text, we have set this term to zero.

van Zon and Schofield

Using the Enskog form for the self-diffusion coefficient and
the CarnahanStarling equation of state, we find that

(ﬂ) __ D 7(2n = 5)90)

Buls 9@ 2(1— 7)* IND

) _ D, D 725 350

(aﬂ)ﬁ“ 28 g@) 21— 7)* 2BIND (A7)

Thus, theM»,4 vertexes used in the main text are

DSO)[k-(k — q) 7(27 — 5)

SSNIN;N;
M21 -

MNO| 9@ 2(1-7)°
ss/K . _ ik-Q
M21(N1P|1 Nl) - 7(]
mssirin _ DK — )k
V6
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