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Abstract

The distribution of the initial very short-time displacements of a single particle is considered for a class of classical

systems with Gaussian initial velocity distributions and arbitrary initial particle positions. A very brief sketch is given of a

rather intricate and lengthy proof that for this class of systems the nth order cumulants behave as t2n for all n42, rather

than as tn. We also briefly discuss some physical consequences for liquids.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

This paper is meant to give a pedagogical sketch of the proof of a theorem for the distribution of initial very
short time single particle displacements in terms of cumulants for a class of classical systems with smooth
potentials, which can be in or out of equilibrium. This theorem is based on a time expansion around t ¼ 0.

The theorem has a number of physical applications [1], including incoherent neutron scattering in
equilibrium systems [2,3], heterogeneous dynamics in supercooled glass-formers [4] and the recently developed
Green’s function approach to transport on picosecond time scales, when the system is far from equilibrium
[5,6].

In order to formulate the theorems we first introduce the moments and cumulants of the distribution of
single particle displacements.
2. Moments and cumulants

In a classical system of N particles with positions ri and velocities vi, we can consider the displacement
DriðtÞ ¼ riðtÞ � rið0Þ of an individual particle i in a time t. For simplicity, we will only consider here the
displacement Dx1ðtÞ ¼ Dr1ðtÞ � x̂ of particle 1 in the x direction.
e front matter r 2006 Elsevier B.V. All rights reserved.
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Given the time t and an initial point in phase space, Dx1ðtÞ is unique. However, we will consider an ensemble
of initial conditions, so that each initial point has a certain probability associated with it. In fact, the theorem
discussed here is applicable to systems whose initial phase space distribution is of the form

PðrN ; vNÞ ¼ f ðrN Þ
YN
i¼1

bimi

2p

� �3=2

exp �
1

2
bimijvi � uij

2

� �
. (1)

Here rN and vN represent the collection of the coordinates rN � ðr1; r2; . . . ; rNÞ and the velocities vN �

ðv1; v2; . . . ; vN Þ of all N particles in the system, respectively, ui ¼ hviit¼0 for each particle i ¼ 1; 2; . . . ;N and
f ðrN Þ is a well behaved, i.e., normalized, but otherwise arbitrary probability distribution function of the rN at
t ¼ 0.1 We will take ui ¼ 0 in the following for simplicity.

Because of the ensemble distribution of initial phase space points, Dx1ðtÞ is not fixed but has a probability
distribution. To characterize this probability distribution function, one may determine its moments

mnðtÞ ¼ h½Dx1ðtÞ�
ni. (2)

The first moment (n ¼ 1) is the average of Dx1ðtÞ, the second moment is the average of its square, etc. It may be
noted that for small times t, Dx1ðtÞ � v1xt, whence one expects

mnðtÞ / tn. (3)

The moments may alternatively be calculated from mnðtÞ ¼ qnFsðk; tÞ=qðikÞ
n
jk¼0 using the moment generating

function

Fsðk; tÞ ¼
X1
n¼0

mnðtÞ
ðikÞn

n!
ð4Þ

¼ heikDx1ðtÞi. ð5Þ

Here we used Eq. (2) in the last equality. The quantity on the right-hand side of Eq. (5) is precisely the self-part
of the intermediate scattering function (the Fourier transform of the Van Hove self-correlation function) and
can be measured through incoherent neutron scattering [2]. Note that we need in principle all mnðtÞ for n from
zero to infinity to find F sðk; tÞ.

Sometimes however, it is known that the first two moments suffice, namely for an ideal gas and for a
perfectly harmonic system, in which cases F s and the Van Hove self-correlation function are Gaussian. This
may still be approximately true in less ideal situations, and in fact, for short times (such as the ones that we are
interested in here) one expects the system to behave almost like an ideal gas. So it makes sense to try to expand
around a Gaussian as a zeroth order approximation.

In such near-Gaussian cases, the so-called cumulants kn are a more convenient set of parameters to work
with than the moments [7]. The cumulants can be found from the cumulant generating function logF sðk; tÞ,
i.e.,

knðtÞ ¼
qn

qðikÞn
logFsðk; tÞjk¼0 (6)

so that

Fsðk; tÞ ¼ exp
X1
n¼1

knðtÞ
ðikÞn

n!

" #
. (7)

Here we will write for convenience the nth cumulant knðtÞ � hhDx
½n�
1 ii, and stress that ½n� is not a power but

an index indicating the order of the derivative of the generating function; for n ¼ 1 the superscript will be
omitted. Equating the right-hand sides of Eqs. (4) and (7), one can derive the first few cumulants in terms of
the moments:

k1ðtÞ ¼ m1ðtÞ,
1In Eq. (1) a multi-component mixture would have different mi for particles i, depending on to which component they belong, while bi

allows the particle to belong to a component with a different temperature at t ¼ 0 than other particles may have.
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k2ðtÞ ¼ m2ðtÞ � m21ðtÞ,

k3ðtÞ ¼ m3ðtÞ � 3m2ðtÞm1ðtÞ þ 2m31ðtÞ; etc. (8)

In general knðtÞ is composed of products of moments of degree m, by dividing its index n in all possible ways
into a sum of integers mpn, so that their sum m equals n. From Eq. (3), one would then expect:

knðtÞ / tn. (9)

3. The theorem

Schofield [8] and Sears [9] found by straightforward but complicated calculations for the initial short time
behavior of the knðtÞ the following results in equilibrium (where all odd indexed cumulants vanish):

k2ðtÞ ¼ Oðt2Þ; k4ðtÞ ¼ Oðt8Þ; k6ðtÞ ¼ Oðt12Þ (10)

instead of the expected behavior knðtÞ ¼ OðtnÞ suggested by Eq. (9).
Our theorem is a generalization of Schofield and Sears’ suggestive results for the first three non-vanishing

cumulants for neutron scatterings in equilibrium to the general class of systems, characterized by the initial
distribution function (1).

The theorem states that if (a) the interparticle and external forces on the particles are smooth and
independent of their velocities, and (b) the velocities are Gaussian distributed and independent of the initial rN

at t ¼ 0, then

knðtÞ ¼
cntn þ Oðtnþ1Þ for np2;

cnt2n þ Oðt2nþ1Þ for n42;

(
(11)

where the cn depend on the forces but not on t.
This result (11) implies hidden correlations in the moments mnðtÞ, which are not eliminated by the simple

moment expansion (8) of the cumulants knðtÞ.
4. Sketch of proof of theorem

The proof of the theorem (11) proceeds as follows, where we give only some of the most important steps.
The full proof is presented in Ref. [1].

1. We consider systems of N particles i ¼ 1; . . . ;N in d ¼ 3 with N ¼ 3N degrees of freedom. It is
convenient for the formulation of the proof to associate with each degree of freedom of the particles i,
(generalized) positions ri and velocities vi respectively, but now with i ¼ 1; . . . ;N. Thus, r1x ! r1; r1y !

r2; r1z ! r3; v1x ¼ v1; . . . ; transforming rN ; vN to rN; vN. The equations of motion are then for i ¼ 1; . . . ;N:

_ri ¼ vi; _vi ¼ Fiðr
N; tÞ=mi ¼ aiðr

N; tÞ. (12)

2. Expand Dr1ðtÞ in powers of t around t ¼ 0

Dr1ðtÞ ¼
X1
m¼1

tm

m!

dmDr1ðtÞ

dtm

����
t¼0

. (13)

3. Here the coefficients of tm are polynomials in v1:

P1 �
dDr1ðtÞ

dt
¼ v1,

P2 �
d2Dr1ðtÞ

dt2
¼ a1ðr

N; tÞ ¼ Oð1Þ,
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P3 �
d3Dr1ðtÞ

dt3
¼

qa1

qt
þ
XN
j¼1

qa1

qrj

vj ¼ OðvNÞ,

P4 �
d4Dr1ðtÞ

dt4
¼ � � � þ

XN
j¼1

XN
k¼1

q2a1

qrjqrk

vjvk ¼ OððvNÞ2Þ etc. (14)

4. Therefore, the time expansion of Dr1ðtÞ can be written in the form:

Dr1ðtÞ ¼
X1
j¼1

Pjðv
NÞtj ¼ P1ðv

NÞtþ P2ðv
NÞt2 þ � � � þ Pnðv

NÞtn þ Oðtnþ1Þ, (15)

where for j41, Pj is a polynomial of degree j � 2 in vN.
5. Then the expansion of knðtÞ up to t2n�1 can be written in the form:

knðtÞ ¼ hhDr
½n�
1 ðtÞii ¼

X
fnjgPn

j¼1 nj ¼ nPn
j¼2 njðj � 2Þon1

n!

n1! � � � nn!
hhv
½n1�
1 ;P½n2�2 ðv

NÞ; . . . ;P½nn�
n ðv

NÞiit

Pn

j¼1
nj j, (16)

with a correction of Oðt2nÞ. In this equation, the semicolons on the right-hand side of Eq. (16) indicate that the
P½n�m inside the hh� � �ii are not to be multiplied, since they are elements of a cumulant.

6. One can prove then that all n terms from tn to t2n�1 in the sum in Eq. (16) vanish, so that only the Oðt2nÞ

remains and knðtÞ ¼ Oðt2nÞ (for n42). The proof of this result is based crucially on the Gaussian properties of
the velocities, so that hv2n

i i ¼ ð2n� 1Þ!!hv2i i
n obtains.

The theorem can be generalized to the displacement of a single particle in different directions in a d-
dimensional space, as well as to the displacements of different particles, and can also be applied to multi-
component mixtures [1].

5. Physical applications

The theorem has a number of physical applications, mostly pertaining to liquids, e.g. (1) It provides a well
ordered short time expansion of the Van Hove self-correlation function relevant for incoherent neutron
scattering in equilibrium systems [2]; (2) The cumulants are connected to the non-Gaussian parameters an

introduced by Rahman and Nijboer [3] and which are used as indicators of dynamical heterogeneity in
supercooled glass-formers [4]; and (3) It provides a well ordered short time expansion of the Green’s functions
for far from equilibrium (mass, momentum and energy) transport on the picosecond time scale [5,6]. For a
more extensive account of these applications we refer to Ref. [1].
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