
Efficient algorithms for rigid body integration using optimized splitting
methods and exact free rotational motion

Ramses van Zon,1,a� Igor P. Omelyan,2 and Jeremy Schofield1

1Chemical Physics Theory Group, Department of Chemistry, University of Toronto, 80 Saint George Street,
Toronto, Ontario M5S 3H6, Canada
2Institute for Condensed Matter Physics, 1 Svientsitskii Street, UA-79011 Lviv, Ukraine

�Received 15 October 2007; accepted 8 February 2008; published online 4 April 2008�

�DOI: 10.1063/1.2889937�

In this note, we present molecular dynamics integration
schemes that combine optimized splitting and gradient meth-
ods with exact free rotational motion for rigid body systems
and discuss their relative merits. The algorithms analyzed
here are based on symplectic, time-reversible schemes that
conserve all relevant constants of the motion. It is demon-
strated that although the algorithms differ in their stability
due to truncation errors associated with limited numerical
precision, the optimized splitting methods can outperform
the commonly used velocity Verlet scheme at a level of pre-
cision typical of most simulations in which dynamical quan-
tities are of interest. Useful guidelines for choosing the best
integration scheme for a given level of accuracy and stability
are provided.

Hamiltonian splitting methods are an established tech-
nique to derive stable and accurate integration schemes in
molecular dynamics.1 The strategy of these methods is to
split the Hamiltonian of the system into parts whose evolu-
tion can be solved exactly. Using the Campbell–Baker–
Hausdorff formula,2 splitting algorithms can be presented as
products of exactly solvable propagation steps, involving
more factors for higher-order schemes.3 The resulting algo-
rithms can be optimized by adjusting the form of the splitting
to minimize error estimates.4

Recently, second- and fourth-order symplectic integra-
tion schemes for simulations of rigid body motion, based on
the exact solution for the full kinetic �free� propagator, have
been proposed.5 While this exact solution involves elliptic
functions, elliptic integrals, and theta functions,6 there exist
efficient numerical routines to compute elliptic functions,7

and the computation of elliptic integrals and theta functions
can be implemented efficiently8 or avoided altogether using a
recursive method.5 Employing the exact free rotational mo-
tion, the resulting splitting method leads to demonstrably
more accurate dynamics for systems in which free motion is
important.5 Furthermore, using the exact kinetic propagator,
any splitting scheme for integrating the dynamics of point
particles can be transferred to rigid systems. Here, we ana-
lyze the combination of the exact kinetic propagator and op-
timized splitting and gradientlike4,9,10 approaches.

For a system of rigid bodies, a phase space point � is
specified by a center of mass position qi, an attitude matrix
Si, and translational and angular momenta pi and �i for each
particle i of mass mi. Given the Hamiltonian H=T+V, where
T and V are the kinetic and potential energies, respectively,

the time evolution of the point � in phase space is governed

by �̇= �H ,��= �T ,��+ �V ,��, in which �,� denotes the Pois-
son bracket. Henceforth, the operators �T , . � and �V , . � will
be designated as A and B, respectively. Defining L=A+B,
the solution of the equations of motion is formally given by
��t�=eLt��0�.

While the various possible splitting schemes can be as-
signed a theoretical efficiency,4 the relative efficiency of real
simulations can be somewhat different. Nonetheless, the es-
timates are useful to eliminate the least efficient variants.
Based on our studies of second- and fourth-order methods,
the most efficient integration schemes can be formulated us-
ing the following generic form of the splitting algorithm for
a single time step of size h:

eLh = e�BheAh/2e�1−2��B̂���heAh/2e�Bh + O�hk+1� . �1�

This propagator is applied t /h times to compute the time
evolution of the system over a time interval t. Here, � and �
are two real parameters, k is the order of the integration
scheme, and eAh and eBh act on a phase space point �
= �qi ,pi ,Si ,�i� as

eAh� = �qi + hpi/mi,pi,Pi�h�Si,�i� , �2�

eBh� = �qi,pi + hfi,Si,�i + h�i� , �3�

where fi and �i are the instantaneous forces and torques on
body i, while the matrix Pi�h� propagates exactly Si over the
time interval h in the absence of torques �see Ref. 5 for

specific forms for Pi�h��. Finally, B̂��� in Eq. �1� is a varia-
tion of B which takes the gradients of forces and torques into
account by an advanced gradientlike method.10 More pre-

cisely, the action of eB̂���h on a phase space point is given by

eB̂���h� = �qi,pi + hf̃ i,Si,�i + h�̃ i� , �4�

where the modified forces f̃ i and torques �̃ i are10

f̃ i = fi + �fi��,��, �̃ i = �i + ��i��,�� . �5�

The shifts in forces and torques account for commutator cor-
rections involving gradients.10 To fourth order in h, the shifts
can be approximated by a finite difference approach using a
small parameter � according to
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�fi��,�� = �fi�q̃,S̃� − fi�q,S��/� ,

�6�
��i��,�� = ��i�q̃,S̃� − �i�q,S��/� ,

where fi�q̃ , S̃� and �i�q̃ , S̃� are the forces and torques at the
auxiliary coordinates,

q̃i = qi + 2��h2fi/mi, S̃i = R�2��h2Ji
−1Si�i�Si. �7�

Here, Ji is the diagonalized moment of inertia tensor of the
ith body �i.e., diag�I1 , I2 , I3�� and R�v� is the Rodrigues
matrix11 that performs a rotation around a vector v. Note that

for �=0, B̂�0�=B, in which case there are no advanced-
gradient contributions. Although the finite difference ap-
proach introduces nonsymplectic terms of order �2h4, no dis-
cernible energy drift was found for small integration time
steps h when the value of the parameter � was taken to be
roughly 10−4.10

By tuning the parameters � and �, different integration
schemes can be obtained. Choosing �=0 and �=0 or �
=1 /2 results in the well-known second-order �k=2� Verlet
scheme, in its position or velocity form, respectively. Fixing
�=0 but allowing � to vary, the prefactors can be minimized
in front of the O�h2� corrections, which gives �
=0.193 183 327 503 783 6 as an optimal choice.4,10 This
scheme, which was called HOA2 in Ref. 10, is still second
order but is expected to be more accurate. Finally, one can
vary both � and � to make the prefactors of the O�h2� cor-
rections vanish to yield a fourth-order algorithm.10 For this
scheme, which we have called GIER4, the required values
are �=1 /6 and �=1 /48.

To assess the relative computational cost of each of the
integration schemes at a given level of accuracy, simulations
of 512 rigid water molecules using the TIP4P potential12

were carried out at liquid density of 1 g /cm3 and a tempera-
ture of 297 K. The accuracy of the simulations was measured
by calculating the ratio R of fluctuations of the total energy
to the fluctuations of the potential energy at a given compu-
tational load. This load was estimated by using the number
of force evaluations in a given time interval, here taken to be
1 ps. At liquid densities, the computational load correlates
very well with the overall CPU time since relatively little
CPU time is required in the free motion propagation steps. In
addition, the stability of each integration scheme was moni-
tored by a linear least-squared analysis of the drift of the
total energy over a series of 10 to 50 runs with total length of
15 ps for each time step reported.

The results of this analysis are plotted in Fig. 1, from
which it is evident that for crude simulations requiring only
modest energy conservation �i.e., R�1.5%�, the standard
Verlet algorithm is the only algorithm that is stable. Trajec-
tories at this level of accuracy can be used in sampling
schemes such as hybrid Monte Carlo. However, for R
�1.5%, arguably the upper limit of allowable error in simu-
lations from which dynamical information can be extracted,
the optimized second-order HOA2 scheme is roughly 1.5

times more efficient than the Verlet algorithm. Note that the
HOA2 algorithm differs from the velocity Verlet scheme
only in the choice of time step for the momentum updates
and is, therefore, simple to implement. Interestingly, the
fourth-order GIER4 scheme is preferable if very accurate
simulations are required �R�0.4% � in spite of the additional
computational cost of the modified forces and torques at aux-
iliary positions. Other fourth-order splitting schemes4 �not
outlined here� have also been tested and found to be less
efficient than the relatively simple GIER4. Streamlining ex-
plicit calculations of the gradients of forces and torques in-
stead of utilizing finite difference methods would restore
symplecticity and likely increase the value of R at which the
GIER4 method is optimal.
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FIG. 1. Efficiency of integration schemes for simulations of rigid water. For
various values of the time step h, the plot shows the relative error vs cost �in
force evaluation per ps�. The plots extend up to values of R where the
simulations start to exhibit statistically significant drift due to numerical
roundoff. The inset shows the same on a logarithmic scale.
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