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A framework for performing event-driven, adaptive time step simulations of systems of rigid bodies
interacting under stepped or terraced potentials in which the potential energy is only allowed to have
discrete values is outlined. The scheme is based on a discretization of an underlying continuous
potential that effectively determines the times at which interaction energies change. As in most
event-driven approaches, the method consists of specifying a means of computing the free motion,
evaluating the times at which interactions occur, and determining the consequences of interactions
on subsequent motion for the terraced potential. The latter two aspects are shown to be simply
expressible in terms of the underlying smooth potential. Within this context, algorithms for
computing the times of interaction events and carrying out efficient event-driven simulations are
discussed. The method is illustrated on a system composed of rigid rods in which the constituents
interact via a terraced potential that depends on the relative orientations of the rods.
© 2008 American Institute of Physics. �DOI: 10.1063/1.2901173�

I. INTRODUCTION

Simulating systems with discontinuous interactions of-
fers a number of advantages over standard molecular dynam-
ics �MD� simulations in which the solution of a system of
ordinary differential equations is solved numerically by iter-
ating a map which approximates the short-time dynamics.1

The advantage of simulating discontinuous systems using
event-driven algorithms2 �discontinuous molecular dynamics
�DMD�� over standard MD is particularly apparent for sys-
tems of low density, where the short-time mapping of the
dynamics in standard MD is applied to freely evolve the
majority of the system. In spite of the rarity of interactions at
low density, the inherent time step in standard MD simula-
tions cannot be increased beyond some small threshold with-
out loss of stability and accuracy of trajectories, since there
is nearly always a small fraction of particles interacting at
any given time. Several adaptive integration methods exist,
typically based on either separating rapidly and slowly vary-
ing components of the potential in a multiple time step
approach,3 or on time reparametrization of the Hamiltonian
equations to a new system that is integrated with a fixed step
size.4 Both methods have inherent drawbacks making them
unsuitable for arbitrary potentials. On the other hand, in the
event-driven approach where there is no inherent time step,
each noninteracting particle is not propagated forward in
time until it interacts with another particle in the system.

Event-driven simulations also have some rather serious
drawbacks. For example, simulations of flexible molecular
systems are plagued with processing often irrelevant in-
tramolecular events on very rapid time scales, wasting a
great deal of computation. When physically reasonable,
much can be gained by treating the molecules as rigid. Al-
though the general framework for performing event-driven

simulations of rigid or constrained systems has been recently
worked out,5 numerical methods must be used to find inter-
action times, potentially leading to gross inefficiencies. An-
other clear drawback that discourages the use of the DMD
approach is that little is known about how to design site-
based, stepped interaction potentials between such rigid bod-
ies, and much work must be done to tune interaction param-
eters, such as well depths and interaction distances at which
discontinuities occur. The design of a distance-based, discon-
tinuous potential for long-ranged electrostatic interactions
seems particularly problematic.

In this article, possible solutions for both these problems
in DMD simulations are presented. An algorithm based upon
an adaptive grid search is presented as an alternative to the
uniform grid approach of Ref. 5 to make the search for in-
teraction times as efficient as possible. We also demonstrate
here how the issue of designing detailed discontinuous po-
tentials can be side stepped altogether by using a mapping of
an underlying continuous pair potential onto discrete poten-
tial energy values. The potential energy then consists of a set
of allowed energy terraces, each mapped onto by many dif-
ferent positions and orientations of the system. The discreti-
zation of the potential energy on the level of the pair poten-
tial implies that the evolution consists of free propagation of
the system punctuated by impulses at discrete times when the
underlying continuous interaction potential for a pair of par-
ticles hits a critical value. Because the scheme uses ordinary
continuous interaction potentials as its basis, no substantial
effort is required to parametrize the Hamiltonian, and the
experience of many years of work in the modeling of system
can be exploited. The method is applicable to any type of
pair-interaction potential and can be used with potentials
written for rigid systems that depend on the center of mass
positions as well as the relative orientation of two interacting
bodies.6,7

The paper is organized as follows: Section II reviews thea�Electronic mail: rzon@chem.utoronto.ca.
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elements of rigid body mechanics required to formulate the
method. In Sec. III, a general description to numerically find
interaction times is presented. A derivation of the conse-
quences of the action of the impulsive forces and torques on
the system is given in Sec. IV. The scheme is applied to a
simple model system with orientationally dependent interac-
tions in Sec. V. Final comments are given in Sec. VI.

II. RIGID SYSTEMS INTERACTING VIA STEPPED
POTENTIALS

The systems considered here consist of N rigid bodies,
each of mass m and moment of inertia tensor Ii. Associated
with each object i are a center of mass position and velocity
ri and vi, an attitude or orientation matrix Ai, and an angular
velocity vector �i. The attitude matrix Ai transforms a vector
a with respect to a fixed inertial lab reference frame to its
representation ã=Aia in the principal-axis frame of body i.
Ai is in fact defined such that the moment of inertia tensor

is diagonal in the principal axis frame: Ĩi=Ai
†IiAi

=diag�Ii1 , Ii2 , Ii3�, where Ii1, Ii2, and Ii3 are the �possibly dis-
tinct� principal moments of inertia of body i. Although there
are several ways to parametrize the attitude matrix A, such as
Euler angles, unit quaternions, or angle-axis8 coordinates,
three generalized coordinates are always required to specify
the orientation of each three-dimensional rigid body, denoted
here by �i= ��i1 ,�i2 ,�i3�. The time derivative of �i can be
related to �i by noting that �i is related to the time deriva-
tive of the attitude matrix via10

�
a=x,y,z

�bac��i�a = �
a=x,y,z

�Ȧi�ab�Ai�ac, �1�

where �bac is the Levi–Civita symbol.8 From this relation,

one can easily derive that �i=Ni
†�̇i, where �Ni�ab

= 1
2�bcd�Ai�ec��Ai�ed /���i�a.

If the system is governed by a smooth potential U, then
the equations of motion imply that

ṗi = −
�U

�ri
= Fi, L̇i = − Ni

−1 �U

��i
� �i, �2�

where pi=mvi is the �linear� momentum of body i, Li= Ii�i is
the angular momentum of that body with respect to its center
of mass, Fi is the force on the center of mass of body i, and
�i is the torque on body i.

In many cases, the formal expression for the torque in
Eq. �2� can be written in compact form which does not de-
pend on the choice of parametrization of the attitude matrix
Ai. For example, if the potential can be written in terms of
site-site interactions, the center of mass force Fi=��Fi� is a
sum of the forces Fi� acting on the sites �, and the torque can
be written as

�i = �
�

�ri� − ri� � Fi�, �3�

where ri� is the position of site � on body i.
A second example where one can write simple expres-

sions for Fi and �i is if the potential U is a sum of pair
potentials Uij between bodies i and j, each of which is rota-
tionally invariant but depends on inner products of the rela-

tive position vector rij =ri−r j and a set of orientationally
dependent vectors si

� and s j
� �where � and � are integers

indicating different vectors for body i and j, respectively�.
Then the force and torque on body i due to interactions with
body j through the interaction potential Uij�rij , �si

�� , �s j
��� can

be written as

Fij = −
�Uij

�rij
r̂ij − �

�

�Uij

��rij · si
��

si
� − �

�

�Uij

��rij · s j
��

s j
�, �4�

�ij = − �
�,�

�Uij

��si
� · s j

��
si

� � s j
� − �

�

�Uij

��rij · si
��

si
� � rij , �5�

where we have used Eq. �2� and the fact that �bde�Ni�ab

= �Ai�cd��Ai�ce /���i�a. Using the expressions of the forces in
Eq. �4�, one finds for each interacting pair Fij +F ji=0, which
implies conservation of total linear momentum �ipi. Further-
more, using the torques in Eq. �5�, it is straightforward to
verify that

ri � Fij + r j � F ji + �ij + � ji = 0, �6�

which, in turn, implies that the total angular momentum
�i�Li+ri�pi� is conserved by the dynamics.11

So far we have considered U to be a continuous poten-
tial, which is required for the derivatives in the above equa-
tions to exist. Now we consider a stepped interaction poten-
tial between a pair i , j of bodies based on a continuous
potential Uij, such that the interaction potential between bod-
ies i and j is of the form

Vij = Vmin + �
k=1

K

��Uij − Uk��Vk, �7�

where ��x� is the Heaviside function, and Uk are a discrete
sets of values of the smooth potential at which the system
gains or loses potential energy �Vk. Note that for a system in
which the underlying continuous interaction energy Uij be-
tween bodies i and j lies anywhere in the range Uk	Uij

	Uk+1, the form of Eq. �7� assigns a constant potential en-
ergy value of Vmin+�k�=1

k �Vk� to this interaction. Figure 1
contains an illustration of the result of this procedure for the
potential energy function given in Eq. �22�. Because of the
shape of the potential energy landscape, we call a potential
of the form �7� a terraced potential.

For a system in which all interactions are of terraced
form, the procedure to evaluate dynamical properties is the
same as that in simulations of hard sphere systems.5 While
the system has constant potential energy between interaction
events, the motion of the system is free and the trajectory of
each constituent is independent of all others. The free propa-
gation of the system between events determines the evolu-
tion of the spatial coordinates of the molecules in the system,
and the interaction times at which the momenta of the system
change discontinuously is determined by identifying the
times at which the underlying continuous pair potential en-
ergy Uij hits an energy terrace Uk where the potential energy
changes discontinuously. Even though this interaction time is
determined by free motion of the system, in general, it must
be found numerically due to the mathematical complexity of
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the interaction condition. The next section addresses this
problem. The final ingredient required to perform event-
driven simulations of systems consists of specifying the in-
teraction rules of how the momenta of the constituents in the
molecular system are altered at the interaction times and is
worked out in Sec. IV.

III. FINDING INTERACTION EVENT TIMES

For systems with terraced potentials as in Eq. �7�, the
particles evolve freely until a configuration of the system is
reached where the instantaneous value of the underlying con-
tinuous potential Uij equals Uk, for some pair of particles i
and j. The first time at which such an event occurs can be
solved by finding the smallest positive zero �root� of the
indicator equation

f ij�t� = Uij�rij�t�,�si
��t��,�s j

��t��� − Uk, �8�

where the time dependence of the indicator function f ij is
determined by the free trajectories of bodies i and j. Al-
though the time dependence of the relative vector rij�t�
=rij�0�+ �vi−v j�t appearing in the indicator function is
simple in the case of free motion, the time dependence of the
orientational vectors si

��t� and s j
��t� depends on the evolution

of the attitude matrices Ai�t� and A j�t�, since these vectors
may be expressed as

si
��t� = Ai

†�t�s̃i
�, �9�

s j
��t� = A j

†�t�s̃ j
�, �10�

where s̃i
� and s̃ j

� are time-independent vectors in the body
frames of particles i and j, respectively.

The form of the time dependence of the attitude matrices
Ai�t� depends on the way in which mass is distributed in the
rigid bodies. Nonetheless, it is possible to write down ana-
lytical expressions for the time dependence of Ai even when
the mass of a body is not symmetrically distributed. The
general solution of Ai�t� can always be written in the form10

Ai�t� = Pi�t� · Ai�0� , �11�

where the matrix Pi�t� propagates the orientation matrix
from an initial time to time t. The precise forms of Pi�t� for
different kinds of rotor can be found in Ref. 10.

Even with analytical expressions for the time depen-
dence of the underlying potential Uij�t�, the earliest interac-
tion time must be found numerically, as was also the case for
event-driven dynamics for rigid systems interacting via site-
site potentials.9 However, one major benefit of utilizing an
energy terracing approach is that there is only a single one-
dimensional root search to be conducted for each pair of
interacting bodies, in contrast to a site-based energy ap-
proach in which all pairs of sites between pairs of molecules
must be examined for the earliest interaction time. Note that
for the special case of spherically symmetric point interac-
tions, the dependence of Uij on the orientational vectors in
cf. Eq. �8� drops out and the search for discontinuities in the
energy can be converted to a search for a critical distance
where the energy is discontinuous. The set of critical dis-
tances can be precomputed at the start of the simulation, and
subsequently used to analytically solve for the event times.

In Ref. 5, a simple approach to find the earliest interac-
tion time was given in which screening methods are used to
identify a minimum and maximum time between which a
root of the indicator function could lie. This interval is then
subdivided into equally sized smaller intervals of fixed size
�t and used to bracket sign changes of the indicator function.
Unfortunately, for translating and rotating rigid bodies, the
indicator function is oscillatory, making the detection of so-
called grazing interactions troublesome unless a very small
grid interval �t is used. Since the indicator function has a
local extremum in a grazing interaction, a good strategy to
find this kind of event is to determine the minimum or maxi-
mum of the indicator function in cases in which the indicator
function f ij�t� itself does not change sign, but its derivative

ḟ i j�t� does. However, in the vicinity of a grazing interaction,
the values of the indicator function are typically small, and

FIG. 1. �Color� Illustration of the potential energy discretization procedure given in Eq. �7� applied to the potential in Eq. �22� of Sec. V, with 
=5 /2,
�=1 and �=1. The left panel shows the continuous potential U and the right panel the terraced variant V if Vmin=−2, �Vk=�V=1,
and Uk=Vmin+ �k− 1

2
��V. On the axes, r= 	ri−r j	 and c=si ·s j.
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hence only extrema where the indicator function at one of
the grid points lies below some threshold value need to be
investigated. Efficient numerical routines exist to find local
extrema of a one-dimensional function,12,13 and thereby de-
tect grazing interactions. Once an interval with a change in
sign of the indicator function has been identified, standard
techniques can be invoked to find the root.12,13

Although the scheme outlined above is fairly robust and
can detect many millions of events without missing roots, its
efficiency is strongly dependent on the choice of basic time
interval �t. In many cases, the size of this interval is deter-
mined not by the typical rate of change of the indicator func-
tion but by certain rare scenarios where rapid changes in the
indicator function and its derivative and multiple local ex-
trema occur. Unnecessarily small time intervals can be
avoided by using the following adaptive bracketing scheme
based on cubic interpolation to estimate the indicator func-
tion and the number of extrema in a given interval.

The basic idea is to use information from previous grid
points as much as possible. Note that when evaluating the
indicator function f at a certain point t, it is very easy to also
compute its time derivative. For a given pair of molecules i
and j and assuming a terraced-interaction potential based on
the continuous pair potential Uij�rij , �si� , �s j��, the time de-
rivative of the indicator function f ij�t� is given by

ḟ i j�t� = − Fij · vij − �ij · �i − � ji · � j , �12�

where vij =vi−v j is the relative velocity vector for the centers
of mass, Fij is the force on i due to j, and �ij and � ji are the
torques on i and j, as given by the smooth interaction in Eqs.
�4� and �2�.

At the start of the search for the first root of the function
f ij, its value and derivative are computed. A linear extrapo-

lation f��t�= f1+ ḟ1t can be used to get an estimate t� for the
root of f ij by solving f��t��=0. The next grid point is then
taken to be t2= t�+�t, where a small �t is added to enhance
the probability of a sign change of f ij in �0, t2�. At t= t2, the
function and its derivative are evaluated. If there is a sign
change in f ij, a root has been bracketed and a numerical root
search using standard techniques is used.12,13 Otherwise,
given the value of the indicator function and its derivative at
two times, a unique cubic interpolation of the indicator func-
tion can be constructed. For example, consider the indicator
function f�t� satisfying f�0�= f1, f��t�= f2 with time deriva-

tives ḟ�0�= ḟ1 and ḟ��t�= ḟ2. Using these values, the cubic
approximation fc�t� for the indicator function over the inter-
val is

fc�t� = f1 + ḟ1t + �t2 + �t3, �13�

where

� =
3�f2 − f1� − �2 ḟ1 + ḟ2��t

�t2 , �14�

� =
2�f1 − f2� + � ḟ1 + ḟ2��t

�t3 . �15�

The number of extrema in the interval �0,�t� is then
estimated by finding the number of real roots of the equation

ḟ c�t�=0 in the interval. Furthermore, the values of the
extrema are easily obtained using Eq. �13�.

The adaptive procedure using the cubic approximants is
most easily explained by considering the example in Fig. 2.
Consider beginning the process of looking for a root after an
interaction event. In this scenario, at point �1� in the figure,
only the value of the indicator function and its derivative are
known at t=0. The next bracketing point is chosen by solv-
ing f��t2��=0. If the time t2� is very large or infinite, the next
bracketing time t2 is chosen to be some default �and regular�
value, �t. On the other hand if t2�	�t, the second bracketing
time t2= t2�+�t is chosen. At point �2�, the indicator function
and its derivative are evaluated and the cubic and linear ap-
proximations to the function evaluated. The linear and cubic
equations are then examined for roots. In the case shown in
Fig. 2, the cubic approximation has no roots whereas the
linear interpolant does, at t3�. Since t3�	 t2+�t, the next
bracketing point is selected to be t3= t3�+�t. But the cubic
interpolant has a local minimum in the interval �t2 , t3�, so a
minimum search algorithm is used to find the actual mini-
mum of f ij at �3�. Since f ij is found to be positive at �3�, a
potential grazing interaction has been ruled out. The root of
the cubic t4� is then used to place the next bracketing point at
t4= t4+�t. The cubic interpolant using points t3 and t4 reveals
that there is a local maximum in this interval, and that there
is a sign change in the indicator function in the interval since
f�t4�	0. The local maximum is investigated and found to be
positive at time t5, so the final bracketing interval where a
root is found is taken to be �t5 , t4�, leading to the root at point
�6�.

IV. INTERACTION RULES

If the total interaction potential for the system is a
pairwise-additive combination of terraced two-body interac-
tion potentials of the form �7�, then forces and torques only

FIG. 2. �Color online� Example of the adaptive root search with cubic
interpolation.
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act instantaneously on a pair of molecules i and j at a time
determined by when Uij is equal to one of the reference
values Uk. The forces and torques are therefore impulsive
and lead to discontinuous changes in the linear and angular
momenta of the pair. The effect of the impulses must be
consistent with conservation conditions that arise from the
symmetries of the overall Hamiltonian, such as the conser-
vation of energy, and conservation of total linear and total
angular momenta.

Since the momenta and angular momenta change discon-
tinuously and are not well defined at an interaction time tc, a
more practical starting point for deriving the interaction rules
is to consider the effect of impulses applied to the overall
change in the momentum and angular momentum of inter-
acting bodies i and j over a small time interval �tc−�, tc+��:

pi� = pi + 

tc−�

tc+�

Fi�t�dt , �16�

Li� = Li + 

tc−�

tc+�

�i�t�dt , �17�

with analogous expressions for molecule j. In Eqs. �16� and
�17�, the primed and unprimed vectors represent post and
preinteraction values of the respective quantities. For small
enough �, the probability of a particle other than j interacting
with i becomes zero. From Hamilton’s equations for the dis-
continuous system, the impulsive forces and torques are then
given by

Fi�t� = Si
fFij�tc���t − tc� , �18�

�i�t� = Si
l�ij�tc���t − tc� , �19�

where Fij�tc� and �ij�tc� are the forces and torques on body i
at the interaction time tc for the continuous system given in
Eqs. �4� and �5�, and Si

f and Si
l are unknown scalars. Note that

the directions of the impulsive forces and torques due to the
pair interaction are along the directions of those quantities
for a continuous system interacting by the same potential at
the interaction time. For the interaction pair i-j, conservation
of linear momentum immediately implies that Sj

f =Si
f =Sf.

The requirement of conservation of total angular momentum
furthermore gives

�Si
l − Sj

l��
�,�

�Uij

��si
� · s j

��
�si

� � s j
�� + �Si

l − Sf�

��
�

�Uij

��si
� · rij�

�si
� � rij� + �Sj

l − Sf�

��
�

�Uij

��s j
� · rij�

�s j
� � rij� = 0. �20�

Since this condition must be satisfied for arbitrary
vectors rij, si

�, s j
�, we conclude that Si

l=Sj
l =Sf =S.14 The

unknown scalar S is now found from conservation of energy,
by solving the quadratic equation

�Fi · Fi

m
+

�i · Ii
−1 · �i

2
+

� j · I j
−1 · � j

2
�S2

+ �vij · Fi + �i · �i + � j · � j�S + �V = 0, �21�

where all quantities are evaluated at interaction time tc and
�V is the change in potential energy. Note that the term

proportional to S can also be written as −U̇ij�tc�, as follows
from Eq. �12�. The physical solution corresponds to the posi-

tive �negative� root branch if U̇ij�tc�	0�U̇ij�tc�0�, pro-
vided real roots exist. If this latter condition is not met, there
is not enough kinetic energy to overcome the discontinuous
barrier, and the system experiences a reflection with no
change in potential energy, i.e., S is the nonzero solution of
Eq. �21� with �V=0.

V. MODEL SYSTEM

As an illustration of the method, consider a system com-
posed of rods in which the continuous interaction potential
between a given pair i-j is of a modified Lennard–Jones form

Uij = 4
� �

re
�12

− � �

re
�6� , �22�

with

re = 	rij	 + �� 1
2 − �si · s j�2� . �23�

Here, si is a vector pointing along the long axis of the rod
and re defines an orientation dependent effective distance of
interaction. Note that the form of this potential makes it en-
ergetically favorable to align adjacent rods orthogonal to one
another.

By construction, the potential is invariant under rotations
and translations and therefore the dynamics conserves the
total linear and angular momentum in addition to the total
energy of the system. Using Eqs. �2�, �4�, and �5�, the force
and torque on body i due to interactions with j is

Fij = −
dUij

�re
r̂ij ,

�ij = 2��si · s j�
dUij

dre
si � s j , �24�

dUij

dre
= −

24


re
2� �

re
�12

− � �

re
�6� .

Note that the torque on i is orthogonal to the vector si, so that
the component of the angular momentum along the axis of
the molecule is constant. Thus, even though the rotational
dynamics of the rigid rods is that of a symmetric top, the
angular motion around the long axis is decoupled from the
other directions and can be neglected.

From this continuous system one can construct a system
with a terraced potential. In the current study, the simplest
form of the terracing procedure will be used, where the dis-
continuities in the potential are evenly spaced values of the
interaction energy, i.e., in Eq. �7� all �Vk are taken to be
equal and the values of Uk are taken to be Uk= �k− 1

2
��V. In

practice, it is desirable to map a value of Uij �0 to zero, so
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that pairs that are far apart do not contribute potential energy
to the system. This is readily accomplished by adjusting the
value of Vmin in Eq. �7�. It is also important that the critical
values Uk not coincide with minima of the smooth pair po-
tential, because a terrace of width zero would result, leading
to numerical instabilities.

It is interesting to consider how the graininess of the
energy terraces influences dynamical phenomena, particular
in dense systems where orientational relaxation times be-
come quite long. To examine the sensitivity of dynamical
correlations to the form of the stepped potential, event-driven
simulations of a system of N=512 rods at a reduced number
density �*=��3=0.5 and reduced temperature T*=kT /

=1.4 were carried out in a periodic, cubic box and contrasted
with standard MD simulations using the continuous underly-
ing potential, Eq. �22�. The parameters chosen for the system
and pair potential were 
=3.0 kJ /mol, �=3.035 Å, �=1 Å,
m=18 g /mol, and I1= I2=1.154 g /mol Å2.

A. Implementation of the event-driven simulation

As was observed in the case of event-driven simulations
based on site-site potentials,9 the efficiency of the event-
driven approach can be greatly enhanced by implementing
several simple and now fairly standard techniques, such as
cell divisions, tree data structures to manage events, and lo-
cal molecular clocks.2 In Ref. 5, two additional techniques
for improving the performance of event-driven simulations
utilizing numerical methods of finding event times were also
presented: The use of screening methods to identify initial
and final bracket times, and the truncation of potentially non-
useful event searches through the scheduling of a virtual in-
teraction. To identify which pairs of particles could have in-
teractions under the terracing potential for a given choice for
the set of discontinuities, the maximum distance rm at which
U is larger than �V /2 was found by solving the equation
Uij =−�V /2 with re=rm−� /2, giving

rm =
1

2
� +

�

�6 1
2 �1 − �1 − �V/�2
��

. �25�

The system is then partitioned using this maximum interac-
tion distance to determine the cell size so that only particles
in the same or adjacent cells interact. For each pair of pos-
sibly interacting particles i and j, the times at which the
distance between center of masses reaches rm is solved ex-
actly using the linear free motion of the pair to determine
minimum and maximum bracketing times.

To implement the virtual interaction event, a root search
procedure for a given pair of rods was only conducted up to
a maximum of 4 fs before the root search was truncated, and
if no root was found, the value of the indicator function and
its derivative at the end point of the interval were stored in
the tree to resume the search for the pair if neither particle
has an event before the point at which the search was halted.
A maximum step size of �t=4 fs was also utilized in the
adaptive search algorithm outlined in Sec. III.

The use of a uniform maximum step size generally leads
to suboptimal tree structures in the priority queue, where
long linear branches corresponding to scheduled simulta-

neous virtual interaction events lead to longer insertion times
of new events into the queue. Two countermeasures were
employed to improve the management of the event queue:
First, the maximum step size �t was given a small random
adjustment to avoid the coincidence of any two virtual inter-
actions. The effect of this adjustment is to form more bal-
anced binary trees free of long linear branches. Second, a
bounded priority queue15 was used in which arrays of linear
lists of events in a given time interval are combined with an
implicit heap binary tree that performs a fine sort of the list
containing the current time interval. The use of the linear
lists enables rapid insertion of future events into the priority
queue, and typically reduced the overall computational time
by around 15% for the system sizes investigated. It is ex-
pected that the advantage of the bounded priority queue over
standard binary tree data structures will increase with in-
creasing system size, since operations on the queue take
O�1� time per event, as opposed to O�log N� time.

To keep the tree structure from growing too large in the
course of a simulation, standard scheduling schemes require
canceling each event which becomes invalid due to the oc-
currence of an earlier interaction involving one of its partici-
pants. Tracking down these events in the tree requires a fair
amount of bookkeeping.2 Directly canceling invalidated
events could be done with the bounded priority queue as
well, but there is no real need to do so since the tree com-
ponent of the event queue is small already. Not removing
invalid events from the queues was found to lead to another
15% reduction in computational time. The problem of grow-
ing linear lists was handled by a �relatively fast and infre-
quent� cleanup of invalid events from the lists when com-
puter memory threatens to be depleted.

B. Comparison between standard molecular dynamics
and event-driven simulations

To assess the relative merits of the DMD approach as
opposed to a standard rigid body MD approach, standard
MD simulation were carried out based on the pair potential
in Eq. �22�. The equations of motion were integrated using a
symplectic integration scheme that utilizes the exact free mo-
tion for both rotational and translational degrees of
freedom.16 The time step used in the standard MD simula-
tions was 1.8 fs, resulting in relative fluctuations of the total
energy to the potential energy of about 1%. To improve the
efficiency of the standard MD simulations, Verlet lists were
used.1 In addition, the potential was smoothly interpolated to
zero starting from a cutoff distance of rl=2.5� and reaching
zero at a distance of ru=3�, by taking as the interaction
potential

Uij
smooth = g�rij�Uij�rij,si,s j� , �26�

where

g�r� = �
1, r 	 rl

�ru − r�2�ru − 3rl + 2r�
�ru − rl�3 , rl � r � ru

0, r  ru

� . �27�
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The effect of discretization in the energy-terrace model
on static structural and dynamical correlations was examined
by varying the energy difference between discontinuities
from a fraction of kT, the natural energy unit of the system,
to several multiples of kT. Not surprisingly, the radial distri-
bution function for the center of mass of the rods, shown in
Fig. 3, shows the same qualitative behavior as that obtained
from the continuous potential system, with clear discretiza-
tion effects visible when large energy gaps �i.e., �V=kT� are
used. As observed in other systems with discontinuous
potentials,9 the peaks and troughs observed in the radial dis-
tribution function tend to be exaggerated, but generally in a
manner that results in the correct integrated number of neigh-

bors for each radial shell. The radial distribution functions
from the standard MD and DMD simulations are in excellent
agreement when �V is kT /2 or less.

Dynamical correlations, on the other hand, tend to be
more sensitive to the level of discretization in the stepped
potential. Considering the normalized velocity autocorrela-
tion function �VACF� of the center of mass, shown in Fig. 4,
it is clear that the VACF decays too quickly for large steps.
This behavior can be understood by noting that the average
number of neighbors in the first solvation shell is too large
when �V=kT, as can be seen from the radial distribution
functions in Fig. 3. The increase in the average number of
neighbors around a given particle leads to an enhanced num-

FIG. 3. �Color online� The radial dis-
tribution function for the center of
mass of the rods.

FIG. 4. �Color online� The normalized
center of mass velocity autocorrelation
function for different levels of energy
terracing.
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ber of interactions at short times that give an exaggerated
kick in random directions to the center of mass velocities and
leads to a rapid loss of correlation. However, as the energy
steps are reduced, there is a convergence of the VACF to-
wards the result of the standard MD simulations since the
local structure as well as the magnitude of the impulses are
modified. Note that when �V=kT /2, the lifetime of velocity
correlations is already roughly correct. For small energy dis-
continuities �such as the �V=0.05kT in Fig. 4� the dynamics
converges to that of the standard MD simulation.

The same trends are observed in the orientational corre-
lation functions. As is clear from Fig. 5, the normalized au-
tocorrelation function of the long axis of the rods decays too
slowly when the energy discontinuities are too large. Once
again, the long lifetime of orientational correlations for the
system with large discontinuities is indicative of pairs of
molecules being too tightly bound in an orientationally de-
pendent, locally preferred configuration. However, the DMD
results rapidly approach the standard MD result as �V is
reduced to kT /2 and exhibit the correct degree of anticorre-
lation for times around 0.15 ps. Further reduction of the dis-
continuity step size �V causes the dynamics in the standard
MD and DMD to become indistinguishable.

For dense systems, the event-driven simulations are not
expected to be much more efficient than standard MD simu-
lations that take advantage of stable and accurate symplectic
integration schemes. The cost of the DMD simulation scales
linearly with the number of events processed per picosecond
of time. Interestingly, for �V in the range of kT to 2kT, the
number of interactions per picosecond is approximately con-
stant and equal to 3.5�104 coll /ps. At this rate of events, the
DMD simulations are roughly 1.7 times more efficient than
the standard MD simulations. However, for �V=kT /2,
where the dynamics compares well with the dynamics of the
continuous system, the rate of interactions per picosecond
increases to around 4.7�104 coll /ps and the relative effi-

ciency of the DMD simulations drops to 1.25. Of course
these results depend strongly on a number of conditions, in-
cluding the physical conditions of simulation, and are par-
ticularly sensitive to the density. For example, for a gaseous
system where T*=10 and �*=0.01, the DMD simulation
with �V=kT /2 becomes more than 120 times more efficient
than the standard MD simulations. From an algorithmic point
of view, the low density DMD simulations resemble an adap-
tive time step simulation approach in which large time steps
are utilized to integrate the equation of motion of a given
particle when it is not interacting with any others, and when
another particle is encountered, the time step is reduced to
properly evolve the system through the interaction region.
The energy-terracing scheme and event detection algorithm
naturally provide an adaptive approach in which an interact-
ing pair may experience many events in rapid succession as
the pair evolves through an interaction region.

VI. CONCLUSIONS

In this article a general framework for performing event-
driven dynamics of rigid bodies has been presented that
makes use of a mapping of a continuous potential onto dis-
crete values. The evolution of the discretized-energy system
consists of periods of free propagation of the system punc-
tuated by impulses generated at discrete times that corre-
spond to moments when the underlying continuous interac-
tion potential for a pair of particles hits a critical value. A
clear advantage of this method is that it can be used with
continuous potentials of any form, including those describing
long-ranged interactions such as Coulomb interactions which
make use of Ewald summations.

An adaptive grid method using cubic interpolation was
presented to facilitate the search for the earliest interaction

FIG. 5. �Color online� The normalized
autocorrelation function of the long
axis vector for different levels of en-
ergy terracing.
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time. The effect of the impulses on the subsequent dynamics
of the system was analyzed using conservation conditions,
resulting in a simulation algorithm that solves the evolution
of the system within numerical precision. The trajectories are
time reversible, and exactly obey all applicable conservation
laws by construction.

The method was demonstrated on a system of dense
rigid rods interacting by a discretized version of a simple
modified Lennard–Jones pair interaction potential in which
the effective distance depends explicitly on the relative ori-
entation of the rods. Although static correlations were rea-
sonably well represented in the discretized potential system
provided the energy mapping was not too coarse, dynamical
correlations and related quantities such as the orientational
relaxation time depend sensitively on the level of discretiza-
tion of the continuous potential. It was found that potential
energy steps on the order of kT /2 were required to reproduce
results from simulations of the continuous potential system.

It should be emphasized that the implementation tested
here, in which an evenly spaced energy discretization was
used, is the simplest choice of mapping of the continuous
system onto a set of discrete energy levels. It is quite likely
that some other distribution of energy levels would lead to
substantial improvements in both the quality of the simula-
tion results and the overall efficiency of the algorithm. How-
ever, such modifications to the implementation must be care-
fully considered, since typically one is only interested in
rough qualitative behavior of a system that is not overly
sensitive to details of an interaction potential. In this case,
the goal is to construct a simple model that demonstrates the
relevant physics. A few, well-chosen potential energy discon-
tinuities can be expected to meet this goal.
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