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Abstract. An effective description for rigid spherical nanoparticles in a fluid
of point particles is presented. The points inside the nanoparticles and the
point particles are assumed to interact via spherically symmetric additive pair
potentials, while the distribution of points inside the nanoparticles is taken to
be spherically symmetric and smooth. The resulting effective pair interactions
between a nanoparticle and a point particle, as well as between two nanoparticles,
are then given by spherically symmetric potentials. If overlap between particles is
allowed, as can occur for some forms of the pair potentials, the effective potential
generally has non-analytic points. It is shown that for each effective potential the
expressions for different overlapping cases can be written in terms of one analytic
auxiliary potential. Even when only non-overlapping situations are possible, the
auxiliary potentials facilitate the formulation of the effective potentials. Effective
potentials for hollow nanoparticles (appropriate e.g. for buckyballs) are also
considered and shown to be related to those for solid nanoparticles. For hollow
nanoparticles overlap is more physical, since this covers the case of a smaller
particle embedded in a larger, hollow nanoparticle. Finally, explicit expressions
are given for the effective potentials derived from basic pair potentials of power
law and exponential form, as well as from the commonly used London–van der
Waals, Morse, Buckingham, and Lennard-Jones potentials. The applicability
of the latter is demonstrated by comparison with an atomic description of
nanoparticles with an internal face centered cubic structure.
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1. Introduction

Nanoparticles [1]–[3], quantum dots [4], (nano)colloidal suspensions [5, 6], and globular
proteins [7, 8] are examples of physical systems in which small nanometer or micron-sized
clusters of particles are suspended in a fluid. Such systems have applications ranging from
material coatings to drug delivery [9, 10]. For colloidal systems, collective behavior has
been the focus of much research [6, 11], while nanoclusters are often studied as isolated
objects [12]–[16], despite interesting collective phenomena such as the increased heat
conductance in dilute nanoparticle suspensions [2] and self-assembly [6].

To study the collective properties of nanoparticles in suspension, one would expect a
detailed description of the internal structure of the clusters not to be necessary, especially
if the nanoparticles are more or less solid. On the other hand, a description in terms
of hard spheres would probably be too crude for nanoparticles since typical atomic
interaction ranges are on the order of ångströms. The main goal of this paper is to
derive a general effective description of solid and hollow, rigid, spherical nanoparticles.
The description will retain a level of detail beyond the hard sphere model and is
intended to be used in the study of the collective behavior of nanoparticles, either
numerically or analytically. The starting point of the description is to assume that
each nanoparticle is composed of particles with fixed relative positions, interacting with
the point particles in the fluid and their counterparts in other nanoparticles through
spherically symmetric pair potentials. The nanoparticles’ distribution of constituents is
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modeled as a smooth spherically symmetric density, which can be viewed as a smoothing
procedure for the interactions. Solid and hollow spheres of uniform density are considered
in detail, since these are suitable for describing solid nanoclusters and buckyballs (or
similar structures), respectively. The spherical smoothing procedure results in spherically
symmetric effective interaction potentials for nanoparticles and point particles, and
consequently leads to a description of nanoparticles as single particles instead of as
collections of particles.

Similar approaches to the problem of constructing effective potentials for spherical
particles have been used before, but only for specific cases [1], [14]–[21], while other
effective potentials for nanoparticles have been simply posed ad hoc [7, 24, 25]. The
current paper is devoted to the general method of deriving effective pair potentials for
nanoparticles from the basic pair potential of their constituents, assuming spherical, rigid
nanoparticles. The (spherical) cases treated in [1], [14]–[16], [18, 17], [19]–[21] are then
special cases of the general formalism presented here.

Specific cases of non-spherical geometries have been considered in the literature,
e.g., planes [17]–[19] and tubes in specific orientations (see [19] and references therein).
However, the general treatment of effective interactions for non-spherical objects poses
additional difficulties due to the orientational dependence of the interaction, with the
exception of infinite planes, which can be viewed as limiting cases of spheres. For that
reason, only spherical ones will be considered here.

The treatment is not restricted to non-overlapping particles (often the only physical
possibility) but covers the possibility of overlapping and embedded particles as well, when
allowed by the physics of the problem. For instance, within the formalism developed
in this paper, a small particle embedded in a larger hollow sphere is considered to be
an overlapping situation. Because the effective potentials for hollow nanoparticles are
derived from those of solid nanoparticles, overlapping solid nanoparticles will also have to
be considered, at least formally.

The paper is structured as follows. In section 2, the general smoothing procedure
is explained. Properties of the resulting effective potentials are explored in section 3,
with special consideration for the difference between non-overlapping and overlapping
particles, which results in a reformulation of the non-analytic effective potentials in terms
of analytic auxiliary potentials. In section 4, the formalism is extended to include hollow
nanoparticles. For uniform solid and hollow nanoparticle structures, explicit effective
potentials for a nanoparticle and a point particle and for different nanoparticles are worked
out in section 5 for the London–van der Waals potential, the exponential potential, the
Morse potential, the (modified) Buckingham potential, and the Lennard-Jones potential.
Section 6 addresses the applicability of the effective potentials by comparison with an
atom-based nanoparticle model. A discussion in section 7 concludes the paper.

2. Smoothing procedure for nanoparticle potentials

Consider a classical system of point particles, representing a fluid, and spherical clusters
called nanoparticles. While in reality, a nanoparticle is a cluster of a number of atoms,
here each nanoparticle will be modeled by a smooth internal density profile ρ(x) that
depends on the distance x from the center of the nanoparticle only and which is strictly
zero for x > s, where s is the radius of the spherical nanoparticle. This approximation
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Figure 1. Coarse-grained radial density profile of the fcc lattice of mean density
ρ̄ = 1 as a function of the distance from a central atom. The circles correspond
to a coarse-graining width of δx = 3/4, the squares correspond to δx = 3/2 (the
points are connected to guide the eye). The horizontal line indicates the mean
number density.

is motivated by the idea that for spherical nanoparticles, the inhomogeneities due to the
discreteness of the atoms inside the nanoparticles should only have a small influence
on the effective nanoparticle potentials. Given a density profile ρ(x), one can make
contact with the picture of a nanoparticle as a cluster of distinct atoms by interpreting
M =

∫
Bs

dx ρ(x) as the total number of atoms inside the nanoparticle, where x = |x|,
and Bs denotes that the integration over x is over the volume of a ball of radius s
around zero.

To further illustrate that it is reasonable to smooth out the internal density, consider
the idealized case where the atoms composing the nanoparticle are arranged in a face
centered cubic (fcc) lattice—the crystal structure of e.g. aluminum, silver, gold, and
platinum [22]—with one of the atoms in the center. The true density inside the
nanoparticle is then a sum of delta functions, but this can be coarse-grained by taking a
spherical shell of radius x with a width δx, counting the number of atoms in the shell, and
dividing by the volume of the shell. The result of such coarse-graining is shown in figure 1
for a lattice with mean number density ρ̄ = 1 and for two values of the coarse-graining
width, δx = 3/4 and 3/2. The coarse-grained density around a single atom in an fcc
crystal is seen to be reasonably constant except near the central atom, with the positive
and negative deviations from the mean density averaging out for larger δx. Therefore,
to first order, the density may be replaced by a constant. The actual applicability of
this smoothing procedure depends of course on the relative length scales in the system.
It is expected that the particles need to be at least several nanometers in size for the
smoothing to be applicable, but this has to be tested. As a first step, the highly idealized
fcc nanoparticles will therefore be used again in section 6 to get an idea of the accuracy
of the effective potentials.

Let φpn(r) denote the basic pair potential between a point of a nanoparticle and a
point particle in the fluid, where r is the distance between them. This potential will be
assumed to be analytic for r > 0 but may diverge as r → 0 as is the case for many
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phenomenological inter-atomic potentials. The effective point–nanoparticle pair potential
Vpn is then given by

Vpn(r) =

∫

Bs

dx ρ(x) φpn(|r − x|), (1)

where the subscript pn denotes that this is a potential between a point particle and a
nanoparticle, and where r is the distance vector between the point particle and the center
of the nanoparticle. Because of the spherical symmetry of the density profile and the pair
potential φpn, the effective potential does not depend on the direction of r, only on its
magnitude r = |r|.

Analogously, the effective inter-nanoparticle potential Vnn for two nanoparticles with
internal density profiles ρ1 and ρ2, and corresponding radii s1 and s2, and whose points
interact through a pair potential φnn, is given by

Vnn(r) =

∫

Bs1

dx

∫

Bs2

dy ρ1(x) ρ2(y) φnn(|r − x − y|). (2)

The potential φnn will also be assumed to be analytic for r > 0. Throughout this paper,
φpn and φnn will be referred to as the basic pair potentials, while Vpn and Vnn are the
effective potentials.

To arrive at more concrete expressions for the effective potentials, it will be assumed
that the internal density profile of the nanoparticles is analytic, so that it may be written
as a Taylor series,

ρ(x) = Θ(s − x)
∞∑

i=0
i even

aix
i, (3)

where Θ is the Heaviside step function. In equation (3), odd powers of x were omitted
since they lead to non-analytic behavior at x = 0. The potentials for a nanoparticle and
a point particle, and for two nanoparticles, respectively, that would result from internal
densities of monomial form Θ(s − x)xi are denoted by

Vi(r) =

∫

Bs

dx xi φpn(|r + x|), (4)

Vij(r) =

∫

Bs1

dx

∫

Bs2

dy xi yj φnn(|r + x − y|). (5)

Here, and below, the dependence of Vi and Vij on s and s1 and s2 will not be denoted
explicitly. In terms of the potentials Vi and Vij, the effective point–nanoparticle and
inter-nanoparticle potentials are given by

Vpn(r) =
∞∑

i=0
i even

aiVi(r) (6)

Vnn(r) =
∞∑

i=0
i even

∞∑

j=0
j even

aibjVij(r) (7)
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where ρ1(x) = Θ(s1 − x)
∑

i aix
i and ρ2(x) = Θ(s2 − x)

∑
j bjx

j are the internal density
profiles of two interacting nanoparticles. While often only the first term i = j = 0 will
suffice, the formalism will be developed for general i and j, since this is not any more
difficult.

The three-dimensional and six-dimensional integrals in equations (4) and (5) for
the effective potentials make further manipulations cumbersome. However, due to the
spherically symmetry of the basic pair potentials, these multidimensional integrals can be
rewritten as integrals over a single variable.

To convert equation (4) to a single integral, one goes over to spherical coordinates
x = (x sin θ cos ϕ, x sin θ sin ϕ, x cos θ), integrates over ϕ and then performs a change of
integration variable from θ to y = [x2 sin2 θ + (r − x cos θ)2]1/2, which yields

Vi(r) =
2π

r

∫ s

0

dx

∫ r+x

|r−x|
dy xi+1 y φpn(y).

Reversing the order of the x and y integrals and using that i is even leads to

Vi(r) =
2π

(i + 2)r

[ ∫ r+s

|r−s|
dy [si+2 − (r − y)i+2] y φpn(y)

+ Θ(s − r)

∫ s−r

0

dy [(r + y)i+2 − (r − y)i+2]yφpn(y)

]

. (8)

Defining a kernel

Ki(x, s) =
2π

i + 2
(si+2 − xi+2) Θ(s − |x|), (9)

one can write the right-hand side of equation (8) in the concise form

Vi(r) =
1

r

∫
dy Ki(r − y, s) y φpn(|y|), (10)

at least for r > s. That equation (10) also holds for r < s (with the same expression for
Ki) is seen by writing the second term in equation (8) as
∫ s−r

0

dy [{si+2 − (r − y)i+2} − {si+2 − (r + y)i+2}]yφpn(y)

=

∫ s−r

−s+r

dy [si+2 − (r − y)i+2] y φpn(|y|).

Combining this with the first term in equation (8) leads again to equation (10). Note that
for the special (uniform) case of i = 0, to be used below, the kernel takes the form

K0(x, s) = π(s2 − x2) Θ(s − |x|). (11)

For the effective inter-nanoparticle potential Vij , one can use that the potential energy
of two nanoparticles is equivalent to the potential energy of a particle and a nanoparticle
of which the points interact via a point–nanoparticle potential Vj , i.e.,

Vij(r) =
1

r

∫
dy Ki(r − y, s1) y Vj(|y|),
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where in Vj , one should replace s by s2, and φpn by φnn. Combining this with equation (10),
and using that Kj(x, s2) is even in x, one obtains

Vij(r) =
1

r

∫
dy dz Ki(r − y, s1) Kj(y − z, s2) z φnn(|z|), (12)

or

Vij(r) =
1

r

∫
dy Kij(r − y, s1, s2) y φnn(|y|), (13)

with the kernel Kij given by

Kij(x, s1, s2) =

∫
dy Ki(x − y, s1) Kj(y, s2). (14)

The integral in this expression is further evaluated in the appendix, where it is shown
that Kij is a piecewise polynomial function of degree i + j + 5 which has a finite support
|x| ≤ s1 + s2, and non-analytic points at x = ±|s1 − s2|. For the special case i = j = 0
which will be used below, one finds from equations (A.3) and (A.4), and after some
rewriting,

K00(x, s1, s2) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

π2

30
(D − |d|)3(d2 + 3D|d| + D2 − 5x2) 0 if |x| ≤ |d|

π2

30
(D − |x|)3(x2 + 3D|x| + D2 − 5d2) if |d| < |x| ≤ D

0 if |x| > D,

(15)

where

D = s1 + s2

d = s1 − s2.
(16)

Because the kernels Ki and Kij are piecewise polynomials, the integrals in
equations (10) and (13) can be performed analytically for many functional forms of φpn

and φnn, such as power law and exponential forms (see section 5), which are the basis of
many commonly used empirical pair potentials.

3. Auxiliary potential formulation

When the rigidity assumption is made, some basic potentials allow for overlap, and some
do not. Mathematically, the following different overlapping cases can occur: a point
particle and a nanoparticle can either overlap (for r < s) or not overlap (for r > s), while
two nanoparticles can have no overlap, which requires r > s1+s2 = D, or partially overlap,
or the smallest nanoparticle can be completely embedded in the larger, which occurs when
r < |s1 − s2| = |d|. Although not evident from equations (10) and (13), the non-analytic
points of the kernels and of the basic pair potential cause the effective potentials to have
different functional forms depending on whether there is overlap. Rather than having to
develop separate frameworks for these cases, it is possible to derive one general framework
by introducing auxiliary potentials.

Note that even when overlap is not physically allowed, the auxiliary potential
formulation is useful, since the effective potentials can be expressed in the auxiliary
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potentials, which tend to have a simpler form that the effective potentials themselves.
Furthermore, the use of auxiliary potentials will make it straightforward to treat the
physical case of hollow particles containing other particles.

The following symmetrization operations on functions f are useful in denoting the
relations between effective and auxiliary potentials1:

f([x]) = f(x) − f(−x) ‘antisymmetrization’

f((x)) = f(x) + f(−x) ‘symmetrization’.

These operations are also useful for functions with multiple arguments, e.g.,

f([x], y) = f(x, y) − f(−x, y)

f(x, (y)) = f(x, y) + f(x,−y)

f([x], [y]) = f(x, y) − f(−x, y) − f(x,−y) + f(−x,−y)

f([x, y]) = f(x, y) − f(−x,−y).

Note that in the last example, a single antisymmetrization was performed which involved
both arguments.

The expressions of the effective potentials Vi and Vij in terms of auxiliary potentials
(whose derivations will follow) are given by

Vi(r) =

{
Ai((r), s) if r < s

Ai(r, [s]) if r > s
(17)

Vij(r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Aij((r), [s1], s2) if r < |d| and s1 < s2

Aij((r), s1, [s2]) if r < d and s1 > s2

Aij((r), s1, s2) − Aij(r, (s1,−s2)) if |d| < r < D

Aij(r, [s1], [s2]) if r > D,

(18)

where the auxiliary potentials are defined as

Ai(r, s) =
1

r

∫ r+s

0

dy K̄i(r − y, s) y φpn(y) (19)

Aij(r, s1, s2) =
1

r

∫ r+s1+s2

0

dy K̄ij(r − y, s1, s2) y φnn(y), (20)

in which furthermore

K̄i(x, s) =
2π

i + 2
(si+2 − xi+2) (21)

K̄ij(x, s1, s2) =

∫ x+s1

−s2

dy K̄i(x − y, s1) K̄j(y, s2). (22)

Note that K̄i is the analytic continuation of Ki, while the quantity K̄ij(x, s1, s2) has the
same functional form as the kernel Kij for x < 0, d < |x| < D (as it coincides with case
4 in the appendix). In particular, for i = j = 0, one has from equation (15)

K̄00(x, s1, s2) =
π2

30
(s1 + s2 + x)3(x2 − 3s1x − 3s2x − 4s2

1 − 4s2
2 + 12s1s2). (23)

1 This notation is similar to the so-called Bach brackets used to denote symmetrized and antisymmetrized tensors
in general relativity; see e.g. [26].
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3.1. Effective potential between a point particle and a nanoparticle

The derivation of equation (17) goes as follows. Consider first the non-overlapping case
r > s. In that case, the absolute value sign in the argument of φpn may be dropped in
equation (10), since r > s and r − y < s (cf equation (9)) imply that y > 0. Thus, the
effective point–nanoparticle potential can be written as

Vi(r) =
1

r

∫
dy Ki(r − y, s) y φpn(y) =

1

r

∫ r+s

r−s

dy K̄i(r − y, s) y φpn(y)

=
1

r

∫ r+s

0

dy K̄i(r − y, s) y φpn(y) +
1

r

∫ 0

r−s

dy K̄i(r − y, s) y φpn(y)

= Ai(r, s) − Ai(r,−s) = Ai(r, [s]). (24)

For the case r < s, the argument in the φpn function in equation (10) needs to be −y for
y < 0, giving

Vi(r) =
1

r

∫ r+s

0

dy K̄i(r − y, s) y φpn(y) +
1

r

∫ 0

r−s

dy K̄i(r − y, s) y φpn(−y)

=
1

r

∫ r+s

0

dy K̄i(r − y, s) y φpn(y) − 1

r

∫ s−r

0

dy K̄i(−r − y, s) y φpn(y), (25)

where a change of integration variable from y to −y was carried out in the second integral,
and it was used that K̄i(y, s) is even in y. The first term on the right-hand side of
equation (25) is equal to Ai(r, s) in equation (19), while the second term equals Ai(−r, s),
so

Vi(r) = Ai(r, s) + Ai(−r, s) ≡ Ai((r), s). (26)

Thus, although the effective potentials between a point particle and a nanoparticle have
different forms for non-overlapping and overlapping situations (equations (24) and (26),
respectively), both can be written in terms of the auxiliary potential Ai, and one obtains
equation (17).

A technical difficulty must be mentioned here, namely, that the integral defining the
auxiliary potential in equation (19) may not converge, even when the linear combinations
in equation (17) do. In such cases, one should strictly write the auxiliary potential as a sum
of a regular and a diverging part by replacing the lower limit of the integral in equation (19)
by δ > 0, and expanding the result in δ. In the absence of overlap, equation (17) must
yield a finite result, i.e., the diverging parts (negative powers of δ and possibly logarithmic
terms) must cancel; hence in that case it suffices to work with the regular part of the
auxiliary potential. On the other hand, in the case of overlap, it is possible that the
divergent parts do not cancel in equation (26), resulting in infinite effective potentials.
An independent criterion for whether an effective potential is infinite in overlapping cases
can be constructed as follows. For a single particle inside a nanoparticle, the effective
potential becomes infinite only if the divergence of the basic pair potential φpn at the
origin is too strong. In particular, if φ(r) ∝ r−k for small r then the point–nanoparticle
potential is infinite for k ≥ 3, as is seen by considering a small sphere around the particle,

giving an integral of the form
∫

r<δ
dr φ(r) ∝ ∫ δ

0
dr r2r−k ∼ (δ3−k/(3 − k)), which diverges

for k ≥ 3 in the limit δ → 0. This result extends to inter-nanoparticle potentials, which
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Figure 2. Subdivision of the integration domain in the derivation of the
expression of the inter-nanoparticle effective potential Vij in terms of the auxiliary
potential Aij . Assuming s1 > s2, three cases have been distinguished: (a) r >
s1 + s2, (b) s1 − s2 < r < s1 + s2, and (c) r < s1 − s2.

are also infinite if there is overlap and the potential φnn diverges no slower than r−3, i.e.,
the Vij(r) are finite for r < D provided φnn(r) diverges for small r slower than r−3. Given
this criterion, the divergent part of an auxiliary potential is not needed to determine
whether the corresponding effective potential is infinite. Since the divergent parts are
needed neither in overlapping nor in non-overlapping cases, below, only the regular parts
of auxiliary potentials will be given.

3.2. Effective potential between two nanoparticles

To derive equation (18) for the effective potentials between two nanoparticles, one starts
by rewriting equation (12) as

Vij(r) =
1

r

∫ s1

−s1

dy

∫ s2

−s2

dx K̄i(y, s1) K̄j(x, s2) (r − x − y) φnn(|r − x − y|). (27)

In this formulation, the integration domain is a rectangle in the (x, y) plane and the
integrand has a diagonal non-analytic line at x + y = r. This diagonal line may or
may not cross the domain, which is what gives rise to non-analyticity and the difference
between overlapping and non-overlapping effective potentials.

Subdividing the domain into triangular regions without non-analyticities will result
in expressions in terms of analytic subexpressions. The appropriate subdivisions of the
integration domain are shown in figure 2, where it was assumed that the radius s1 is larger
than the radius s2. The three panels of the figure correspond to the three cases that need
to be distinguished: (a) no overlap: r > s1 + s2, (b) partial overlap: s1 − s2 < r < s1 + s2,
and (c) complete overlap, r < s1 − s2. In all three panels of figure 2, the rectangle ABCD
is the integration domain, and the diagonal line through points E and H is the line of
non-analyticities (where r − x − y = 0). For points below this line, the absolute value in
the argument of φnn in equation (27) may be omitted, while for points above this line,
it changes the sign of the argument. Considering first case (a), i.e., no overlap, one sees
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from figure 2(a) that

Vij(r) = I+
AEH − I+

BEG − I+
DFH + I+

CFG, (28)

where I+
XYZ is the integral (27) with the absolute value sign omitted, and evaluated over

the area of the triangle XYZ. For case (b), i.e., partial overlap, one finds from figure 2(b)

Vij(r) = I+
AEH − I+

BEG − I+
DFH + I−

CFG, (29)

where the superscript ‘−’ indicates that the sign of the argument of φnn in equation (27)
is changed. Finally for case (c), one finds from figure 2(c)

Vij(r) = I+
AEH − I+

BEG − I−
DFH + I−

CFG. (30)

Note that for even basic potentials φpn and φnn, the sign of the arguments is
inconsequential, so all three cases (28)–(30) will have the same functional form.

The integration limits appropriate for the triangular regions are easily determined
from figure 2, yielding the following explicit expression for the integral I+

AEH:

I+
AEH =

1

r

∫ r+s1

−s2

dx

∫ r−x

−s1

dy K̄i(y, s1) K̄j(x, s2) (r − x − y) φnn(r − x − y)

= Aij(r, s1, s2). (31)

Here, the identification with Aij followed from equations (20) and (22). Given the form
of the auxiliary potential in equation (31), it is not hard to show that

I+
BEG = Aij(r, s1,−s2),

I+
DFH = Aij(r,−s1, s2),

I+
CFG = Aij(r,−s1,−s2),

(32)

so with equation (28) one finds for the non-overlapping case

Vij(r) = Aij(r, s1, s2) − Aij(r, s1,−s2) − Aij(r,−s1, s2) + Aij(r,−s1,−s2)

= Aij(r, [s1], [s2]). (33)

As was the case for Ai, Aij may have divergent parts which cancel in equation (33) and
will be omitted below.

According to equations (28) and (29), the partially overlapping case (b) only requires
replacing I+

CFG by I−
CFG, which is given by

I−
CFG =

1

r

∫ s2

r−s1

dx

∫ s1

r−z

dy K̄i(y, s1) K̄j(x, s2) (r − x − y) φnn(−r + x + y). (34)

Making the substitutions y → −y, x → −x, and using that K̄i and K̄j are even in x and
y, one finds

I−
CFG = Aij(−r, s1, s2), (35)

so for d < r < D

Vij(r) = Aij(r, s1, s2) − Aij(r, s1,−s2) − Aij(r,−s1, s2) + Aij(−r, s1, s2)

= Aij((r), s1, s2) − Aij(r, (s1,−s2)). (36)
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For the fully overlapping case, finally, one furthermore needs to replace I+
DFH by

I−
DFH =

1

r

∫ −s2

r−s1

dx

∫ s1

r−z

dy K̄i(y, s1) K̄j(x, s2) (r − x − y) φnn(−r + x + y)

= Aij(−r, s1,−s2), (37)

whence for r < d

Vij(r) = Aij(r, s1, s2) − Aij(r, s1,−s2) − Aij(−r, s1,−s2) + Aij(−r, s1, s2)

= Aij((r), s1, [s2]). (38)

The reason that this is not symmetric in s1 and s2 is because of the assumption that
s1 > s2. With s1 < s2 and r < s2 − s1, one would have obtained Vij(r) = Aij((r), [s1], s2).
This completes the derivation of equation (18).

3.3. Ambiguity in the auxiliary potentials

There is a degree of freedom in choosing the auxiliary potentials in equations (17) and (18),
since they enter only in specific combinations. In particular, according to equation (17),
the effective point–nanoparticle potential is either r symmetric or s antisymmetric. Thus,
one may replace Ai(r, s) by Ai(r, s) + X(r, s) if the function X(r, s) is antisymmetric in r
as well as symmetric in s, i.e., if

X(r, s) = X(r,−s) = −X(−r, s). (39)

Conversely, any terms in Ai that satisfy equation (39) are irrelevant to equation (17)
and may, therefore, be omitted. Similarly, the effective inter-nanoparticle potential in
equation (18) is not affected by adding a function Y (r, s1, s2) to the auxiliary potential
Aij , as long as Y satisfies

Y (r, s1, s2) − Y (r,−s1, s2) − Y (r, s1,−s2) + Y (r,−s1,−s2) = 0

Y (r, s1, s2) = Y (−r,−s1,−s2),
(40)

while terms present in Aij that satisfy these relations are irrelevant, and may be omitted.

4. Solid and hollow nanoparticles

Two particular cases of the internal nanoparticle densities ρ will be considered in detail
below. The first is the case of a uniform internal density ρ inside a solid sphere of radius
s:

ρ(x) = ρΘ(s − x). (41)

Since equation (41) is of the form aiΘ(s − x)xi with i = 0 and a0 = ρ, equation (6) gives
for the effective point–nanoparticle potential

Vpn(r) = ρV0(r). (42)

Similarly, the effective inter-nanoparticle potential of two solid nanoparticles of uniform
density ρ1 and ρ2, and radii s1 and s2, respectively, satisfies (cf equation (7))

Vnn(r) = ρ1ρ2V00(r). (43)
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The second type of ‘internal’ density ρ(x) considered here is that of hollow
nanoparticles, whose density is concentrated on the surface of the sphere, i.e.,

ρ(x) = ρ̃ δ(s − x), (44)

where ρ̃ is the surface density on the area of the sphere of size s. This density is appropriate
for describing e.g. buckyballs [21]. This density could be seen as the limit of a spherical
shell with a thickness h which is taken to go to zero. One may therefore obtain the
effective potentials for this case by subtracting two effective potentials, as was done for
instance in [1] and [17]. Starting from equation (44), however, the limiting process is not
needed. The density in equation (44) cannot be written in the form of equation (3), but
it is linked to the uniform internal density in equation (41) by

ρ̃δ(s − x) = ρ̃
∂Θ(s − x)

∂s
. (45)

Consequently, the effective point–nanoparticle potential for this case is given by

Vpn(r) = ρ̃ Vh(r), (46)

with

Vh(r) =
∂V0(r)

∂s
, (47)

where the subscript h indicates that this potential acts between a hollow nanoparticle and
a point particle.

In a similar fashion, the inter-nanoparticle potentials for a solid and a hollow
nanoparticle (sh) is given by

Vnn(r) = ρ1ρ̃2 Vsh(r) (48)

and the potential for two hollow nanoparticles (hh) satisfies

Vnn(r) = ρ̃1ρ̃2 Vhh(r), (49)

where ρ̃1 and ρ̃2 are the surface density of the two nanoparticles, while the scaled inter-
nanoparticle potentials in equations (48) and (49) are given by

Vsh(r) =
∂V00(r)

∂s2

Vhh(r) =
∂2V00(r)

∂s1∂s2
.

(50)

Thus, the effective potentials Vh, Vsh and Vhh can be found by differentiation once V0 and
V00, are known.

The effective potentials for solid nanoparticles can be expressed in terms of auxiliary
potentials A0 and A00 using equations (17) and (18). In applying equations (47)
and (50) to these expressions, it should be realized that taking a derivative turns an
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antisymmetrized function into a symmetrized one, and vice versa. Thus, by defining

Ah(r, s) =
∂A0(r, s)

∂s

Ash(r, s1, s2) =
∂A00(r, s1, s2)

∂s2

Ahh(r, s1, s2) =
∂2A00(r, s1, s2)

∂s1∂s2

,

(51)

one gets for the effective potentials

Vh(r) =

{
Ah((r), s) if r < s

Ah(r, (s)) if r > s,
(52)

Vsh(r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ash((r), [s1], s2) if r < |d| and s1 < s2

Ash((r), s1, (s2)) if r < d and s1 > s2

Ash((r), s1, s2) + Ash(r, [s1,−s2]) if |d| < r < D

Ash(r, [s1], (s2)) if r > D,

(53)

Vhh(r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ahh((r), (s1), s2) if r < |d| and s1 < s2

Ahh((r), s1, (s2)) if r < d and s1 > s2

Ahh((r), s1, s2) + Ahh(r, (s1,−s2)) if |d| < r < D

Ahh(r, (s1), (s2)) if r > D.

(54)

5. Effective potentials for uniformly solid and hollow nanoparticles

5.1. Power laws

Pair potentials of power law form

φn(r) =
1

rn
, (55)

with n integer, are basic building blocks of many atomic and molecular pair potentials,
such as the Coulomb potential (n = 1) and the Lennard-Jones potential (a linear
combination of n = 6 and 12). Note that here and below, a superscript on a potential
represents an index, not a power.

The effective potential V n
0 for a point particle and a solid nanoparticle of radius s

whose points interact with the particle through φpn = φn is given in terms of the auxiliary
potential by equation (17). The auxiliary potential follows from equations (19), giving,
for general n,

An
0 (r, s) =

π

r

∫ r+s

0

dy
s2 − (r − y)2

yn−1

=
2π[r + (n − 3)s]

(n − 2)(n − 3)(n − 4) r (r + s)n−3
, (56)

where divergent terms were omitted, as explained in section 3.1.
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The right-hand side of equation (56) becomes ill-defined for the specific values n = 2,
3 and 4. This problem is caused by a term proportional to xn′−n−1 in the integrand in
equation (56) (with n′ = 2, 3 or 4), which when n = n′ should have resulted in a term
ln(r + s) instead of the erroneous and ill-defined expression ((r + s)n′−n/(n′ − n)) that
occurs in equation (56). Using that limn→n′(∂/∂n)[(n − n′)(xn′−n/(n′ − n))] = ln x, this
can be fixed by making the substitution

An′ −→ lim
n→n′

∂

∂n
[(n − n′)An]. (57)

Applied to equation (56), this gives

A2
0(r, s) =

π(r + s)(3r − s)

2r
+

π(s2 − r2)

r
ln(r + s)

A3
0(r, s) = −2πs

r
+ 2π ln(r + s)

A4
0(r, s) = −π(3r + s)

2r(r + s)
− π

r
ln(r + s).

(58)

The effective potential V n
0 is obtained from these expressions for the auxiliary potential

using equation (17).
From equations (51) and (56), it follows that the auxiliary potential for a hollow

nanoparticle and a point particle is given by

An
h(r, s) = − 2πs

(n − 2) r (r + s)n−2
. (59)

Equation (59) is ill-defined for n = 2, in which case one uses equation (57) to find

A2
h(r, s) =

2πs

r
ln(r + s). (60)

The effective potential V n
h is now obtained from equation (52).

For the effective inter-nanoparticle potential V00, the auxiliary potential formula-
tion (18) holds with i = j = 0, where the auxiliary potential is found using equation (20)
with φnn = φn, giving

An
00(r, s1, s2) =

4π2pn(r, s1, s2)

(n − 7)(n − 6)(n − 5)(n − 4)(n − 3)(n − 2) r (r + s1 + s2)n−5
, (61)

where

pn(r, s1, s2) = r2 + (n − 5)(s1 + s2)r + (n − 6)[s2
1 + s2

2 + (n − 5)s1s2]. (62)

The expression in equation (61) is ill-defined for n = 2, 3, 4, 5, 6 and 7. Using again
equation (57), the correct expression for An

00 for these values of n is found to be

An
00(r, s1, s2) =

4π2

r (r + s1 + s2)n−5
∏7

�=2
� �=n

(	 − n)

×
{

pn(r, s1, s2)

[

ln(r + s1 + s2) −
7∑

�=2
� �=n

1

	 − n

]

− s2
1 − s2

2 − (s1 + s2)r + (11 − 2n)s1s2

}

. (63)
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According to equation (51), the auxiliary potential for a solid sphere of radius s1 and
a hollow sphere of radius s2 can be found by taking the derivative with respect to s2,
yielding, for general n,

An
sh(r, s1, s2) =

−4π2s2[r + (n − 4)s1 + s2]

(n − 5)(n − 4)(n − 3)(n − 2)r(r + s1 + s2)n−4
. (64)

Finally, the effective potential for two hollow spheres follows from another derivative with
respect to s1 (cf equation (51)), leading to

An
hh(r, s1, s2) =

4π2s1s2

(n − 3)(n − 2) r (r + s1 + s2)n−3
. (65)

For the ill-defined cases of equations (64) and (65), one can use equation (57) to get
expressions similar to the one in equation (63).

5.2. Exponentials

The effective interactions as a result of the exponential pair potential

φE(r) = e−r (66)

will now be derived. Substituting this potential for φpn in the expression (19) for the
auxiliary potential gives

AE
0 (r, s) =

2π(3 + r + sr + s2 + 3s)

r
e−r−s + 4π, (67)

where an irrelevant expression satisfying equation (39) was omitted. From equations (51)
and (67), the auxiliary potential for a point particle and a hollow nanoparticle is found
to be

AE
h (r) = −2πs(1 + r + s)

r
e−r−s. (68)

Note that the corresponding effective potentials follow from equations (17) and (52).
The effective inter-nanoparticle potential is of the auxiliary potential form (18) with

i = j = 0. The auxiliary potential AE
00 is found using equation (20) with φnn = φE, giving

AE
00(r, s1, s2) = 4π2 (r + s1 + s2 + 5)(s1 + 1)(s2 + 1) + 1 − s1s2

r
e−r−s1−s2

+
π2

3r
[8(s1 + s2)(s

2
1 + s2

2 − s1s2)r + 6(s2
1 + s2

2 − 4)(r2 + 4)

− r4 + 3(s2
1 − s2

2)
2 + 24], (69)

where an expression satisfying equation (40) has been omitted. Using equations (51), the
auxiliary potentials for the interactions between a solid and a hollow nanoparticle and
between two hollow particles are found to be

AE
sh(r, s1, s2) =

−4π2s2[(r + s1 + s2 + 4)(s1 + 1) − s1]

r
e−r−s1−s2

+
4π2s2[(r + s2)

2 − s2
1 + 4]

r
(70)

AE
hh(r, s1, s2) =

4π2s1s2(r + s1 + s2 + 2)

r
e−r−s1−s2 − 8π2s1s2

r
. (71)
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Figure 3. Typical example of effective potentials based on an exponential
interaction (equations (18) and (69)). The left panel shows the point–nanoparticle
potentials for solid (s) and hollow (h) spheres with radius s = 3, while the right
panel shows the inter-nanoparticle potentials for radii s1 = 4 and s2 = 1.

Figure 3 shows a typical example of the effective potentials derived from the
exponential basic potential (cf equations (17), (18), (52)–(54) and (67)–(71)). One sees
that these effective potentials are very smooth and do not have a hard core, which is
typical for effective potentials based on a basic pair potential that does not diverge for
small distances.

5.3. Examples using common pair potentials

London–van der Waals potential. In this section, the effective potentials based on the
London–van der Waals potential

φ6(r) =
1

r6
(72)

will be presented. Note that the negative prefactor that occurs in front of the attractive
London–van der Waals interaction has been omitted here. Substituting n = 6 into
equation (56), and using equation (17), one finds the London–van der Waals potential
for a solid nanoparticle and a point particle:

V 6
0 (r) =

4πs3

3(r2 − s2)3
, (73)

for r > s. This effective potential becomes infinite for r < s. For the London–van der
Waals interaction of a hollow nanoparticle with a point particle, equations (52) and (59),
with n = 6, lead to

V 6
h (r) =

4πs2

(r2 − s2)3
+

8πs4

(r2 − s2)4
. (74)

The effective London–van der Waals interaction potential for two solid nanoparticles
is determined by substituting n = 6 into equation (63), and using equation (18), which
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Figure 4. Typical example of effective potentials based on the London–van der
Waals interaction, i.e., the power law in equation (55) with n = 6. The left panel
shows the potential for a point particle and solid or hollow nanoparticle of radius
s = 3; the right panel shows the potential for two nanoparticles of radius s1 = 4
and s2 = 1.

gives

V 6
00(r) =

π2s1s2

3(r2 − d2)
+

π2s1s2

3(r2 − D2)
+

π2

6
ln

r2 − D2

r2 − d2
. (75)

This result coincides with that of Hamaker [20].
Using equations (50) and (75), or using equations (64) and (53), one finds for the

London–van der Waals potential V 6
sh for a solid nanoparticle of radius s1 and a hollow

nanoparticle of radius s2

V 6
sh(r) =

2π2s1s2D

3(r2 − D2)2
− 2π2s1s2d

3(r2 − d2)2
− π2s2

3(r2 − D2)
+

π2s2

3(r2 − d2)
. (76)

The effective London–van der Waals potential V 6
hh for two hollow nanoparticles, finally,

is obtained from equation (76) using equation (50), or alternatively from equations (65)
and (54), with the result

V 6
hh(r) =

8π2s1s2D
2

3(r2 − D2)3
− 8π2s1s2d

2

3(r2 − d2)3
+

2π2s1s2

3(r2 − D2)2
− 2π2s1s2

3(r2 − d2)2
. (77)

Figure 4 shows a typical example of the effective potentials for the London–van der Waals
interaction as the basic pair potential.

Morse potential. The Morse potential [29]

φM(r) = e−2b(r−1) − 2e−b(r−1), (78)

is used e.g. for molecular bonds and for pure metals [30]. It is a sum of two exponential
functions, so having derived the formulae for the exponential potential in section 5.2, one
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Figure 5. Example of Morse effective potentials for b = 2.6. The left panel
shows the effective potential for a particle and a solid or hollow nanoparticle of
radius s = 3; the right panel shows the effective potentials for two nanoparticles
of radius s1 = 4 and s2 = 1.

easily finds the corresponding point–nanoparticle interactions by taking the combinations

V M
0 (r) =

e2b

23b3
V E

0 (2br, 2bs) − 2eb

b3
V E

0 (br, bs) (79)

V M
h (r) =

e2b

22b2
V E

h (2br, 2bs) − 2eb

b2
V E

h (br, bs), (80)

where the notation V E
0 (αr, βs) indicates that in V E

0 and V E
h , r is to be replaced by αr

and s by βs. Likewise, the inter-nanoparticle interactions for the Morse potential in
equation (78) are given by

V M
00 (r) =

e2b

26b6
V E

00(2br, 2bs1, 2bs2) − 2eb

b6
V E

00(br, bs1, bs2). (81)

V M
sh (r) =

e2b

25b5
V E

sh(2br, 2bs1, 2bs2) − 2eb

b5
V E

sh(br, bs1, bs2). (82)

V M
hh (r) =

e2b

24b4
V E

hh(2br, 2bs1, 2bs2) − 2eb

b4
V E

hh(br, bs1, bs2). (83)

Two examples of the Morse-based effective potentials are shown in figures 5 and 6,
for b = 2.6 and b = 5.6, respectively. For the lower value of b, there is a low barrier
to a point particle penetrating a nanoparticle as well as to one nanoparticle penetrating
another (cf figure 5), while for the larger value of b this is virtually impossible (cf figure 6)
if the energies of the particles are of order 1.

Buckingham potential. The modified Buckingham potential [31]

φB(r) =

{
∞ if r < r∗,

ae−br − cr−6 if r > r∗,
(84)
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Figure 6. Example of Morse effective potentials for b = 5.6, for which the
Morse potential resembles the Lennard-Jones potential. The left panel shows
the effective point–nanoparticle potentials for s = 3; the right panel shows the
effective potentials for two nanoparticles of radius s1 = 4 and s2 = 1.

is made up of an exponential part, for which the results of section 5.2 apply, and an
attractive London–van der Waals term treated above. In addition, one needs to take the
cut-off r∗ into account. This cut-off is necessary because otherwise, for small enough r,
the Buckingham potential would become negative. Thus, the effective point–nanoparticle
potentials are

V B
0 (r) =

{∞ if r < s + r∗

a

b3
V E

0 (br, bs) − cV 6
0 (r) if r > s + r∗

(85)

V B
h (r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a

b2
V E

h (br, bs) − cV 6
h (r) if r < s − r∗

∞ if |s − r| < r∗

a

b2
V E

h (br, bs) − cV 6
h (r) if r > s + r∗

(86)

while the effective inter-nanoparticle potentials are given by

V B
00(r) =

{∞ if r < D + r∗

a

b6
V E

00(br, bs1, bs2) − cV 6
00(r) otherwise

(87)

V B
sh(r) =

{∞ if −d − r∗ < r < D + r∗

a

b5
V E

sh(br, bs1, bs2) − cV 6
sh(r) otherwise

(88)

V B
hh(r) =

{∞ if |d| − r∗ < r < D + r∗

a

b4
V E

hh(br, bs1, bs2) − cV 6
hh(r) otherwise.

(89)

While the effective potentials due to the exponential pair potential are different for
different cases (no overlap, partial overlap, and complete overlap), because of the presence
of a cut-off r∗, only the non-overlapping case is relevant here.
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Figure 7. Typical example of effective potentials based on the Buckingham
potential for a = e13, b = 13 and c = 2, with the cut-off r∗ set to 1/4.
The left panel shows the effective potential for a point particle and a solid or
hollow nanoparticle of radius s = 3; the right panel shows the potentials for two
nanoparticles of radius s1 = 4 and s2 = 1.

In figure 7, a typical example of these potentials is shown. Note that while it is
possible for a point or nanoparticle particle to be inside the hollow nanoparticle (as long
as there is no overlap), there is an infinite barrier to getting inside from the outside, in
contrast with the effective potentials based on the Morse potential.

Lennard-Jones potential. One of the most often used potentials in molecular dynamics
simulations is the Lennard-Jones potential [27], which in reduced units reads

φLJ(r) =
1

r12
− 2

r6
= φ12(r) − 2φ6(r). (90)

Since the attractive part of the Lennard-Jones potential in equation (90) was handled
above, one only needs to add the repulsive part r−12 to find the effective potentials for
Lennard-Jones nanoparticles. Substituting n = 12 into the results of section 5.1, and
using the relations between auxiliary and effective potentials, one finds

V 12
0 (r) =

4πs3

3(r2 − s2)6
+

80πs9 + 432πr4s5

45(r2 − s2)9
(91)

V 12
h (r) =

4πs2

(r2 − s2)6
+

64πr2s4(r4 + (6/5)s2r2 + s4)

(r2 − s2)10
(92)

V 12
00 (r) =

π2

37 800r

[
(r + (7/2)D)2 + (5/4)D2 − (15/2)d2

(r + D)7

− (r + (7/2)d)2 + (5/4)d2 − (15/2)D2

(r + d)7

+
(r − (7/2)D)2 + (5/4)D2 − (15/2)d2

(r − D)7

− (r − (7/2)d)2 + (5/4)d2 − (15/2)D2

(r − d)7

]

(93)
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Figure 8. Typical effective potentials based on the Lennard-Jones potential
(equations (96)–(98)). One the left, the potential for a point particle and solid
or hollow nanoparticle of radius s = 3 is shown, and on the right, the potentials
for two nanoparticles of radius s1 = 4 and s2 = 1.

V 12
sh (r) =

π2s2

1260r

[

−r + (9/2)D + (7/2)d

(r + D)8
− r − (9/2)D − (7/2)d

(r − D)8

+
r + (9/2)d + (7/2)D

(r + d)8
+

r − (9/2)d − (7/2)D

(r − d)8

]

(94)

V 12
hh (r) =

2π2s1s2

45r

[
1

(r + D)9
+

1

(r − D)9
− 1

(r + d)9
− 1

(r − d)9

]

. (95)

The potential V 12
00 is in agreement with the result in the appendix of [1]. The point–

nanoparticle potentials for the Lennard-Jones potential are now given by

V LJ
0 (r) = V 12

0 (r) − 2V 6
0 (r)

=
4πs3

3(r2 − s2)6
+

80πs9 + 432πr4s5

45(r2 − s2)9
− 8πs3

3(r2 − s2)3
(96)

V LJ
h (r) = V 12

h (r) − 2V 6
h (r)

=
4πs2

(r2 − s2)6
+

64πr2s4(r4 + (6/5)s2r2 + s4)

(r2 − s2)10
− 8πs2

(r2 − s2)3
− 16πs4

(r2 − s2)4
. (97)

Equation (96) gives in more concise notation the result of Roth and Balasubramanya
(equation (2) in [15]). Likewise, the inter-nanoparticle interactions due to a Lennard-
Jones potential are given by

V LJ
ij (r) = V 12

ij (r) − 2V 6
ij(r), (98)

where ij = 00, sh or hh. In figure 8, a typical example of these effective potentials
is shown. Note the hard core part of the potentials. For the specific case of a
system of nanoparticles with the same radii s1 = s2 = s, studied in [28], the effective
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Table 1. Coefficients for the polynomials appearing in the effective inter-
nanoparticle potentials based on the Lennard-Jones potentials, i.e., V LJ

00 , V LJ
sh

and V LJ
hh in equations (99)–(101).

i 0 1 2 3 4 5 6 7 8

αss
i − 213

315
219 136
4725 − 24 064

675
3456
225 − 27

45
24

9

αsh
i

215

315 − 216

315
213

45 − 212

45
27

3 − 28

15
24

3

αhh
i

220

45 − 218

5
218

5 − 917 504
30

57 344
5 − 13 312

5
14 336

15 27 24

inter-nanoparticle interactions can be written in terms of η = r/s as

V LJ
00 (r) =

π2
∑5

i=0 αss
i η2i

s6 η8 (η2 − 4)7
− 4π2

3

η2 − 2

η2 (η2 − 4)
− π2

3
ln

(

1 − 4

η2

)

(99)

V LJ
sh (r) =

π2
∑6

i=0 αsh
i η2i

s7 η8 (η2 − 4)8
− 32π2

3s η2 (η2 − 4)2
(100)

V LJ
hh (r) =

π2
∑8

i=0 αhh
i η2i

s8 η10 (η2 − 4)9
− 32π2 η4 + 6η2 − 8

s2 η4 (η2 − 4)3
(101)

with the α coefficients given in table 1. Equation (101) is the so-called Girifalco
potential [21].

6. Accuracy of Lennard-Jones-based potentials for fcc nanoparticles

Since the effective potentials derived above are intended to model nanoparticles, it is
natural to ask to what extent they can represent the interactions of nanoclusters composed
of discrete atoms. The answer will obviously depend on the structure of the nanoclusters,
but to get at least a partial answer, the fcc nanoparticles introduced in section 2 will be
used again, with the basic pair potentials φpn and φnn given by the Lennard-Jones potential
φLJ in equation (90). The Lennard-Jones potential has a minimum at r = 1, which sets
the unit of length. The fcc nanoparticles are constructed from an fcc lattice with mean
density ρ̄ = 1 by picking an atom and including all atoms within a given distance from
it. Note that this gives only specific values for the number M of included atoms, since
many atoms lie at the same distance in the crystal structure. M was restricted to being
less than 20 000, resulting in 206 clusters, the largest of which has M = 19 861 atoms.

The mean density ρ̄ = 1 for the fcc nanoparticles is not unrealistic: it results in a
lattice distance a = 41/3 ([22], p 12), i.e., the ratio of the lattice distance to the interaction
range is 41/3 ≈ 1.587. A comparable ratio is found in the case of platinum nanoparticles
in water: assuming that the lattice distance a is the same as in a bulk platinum crystal,
a = 3.92 Å ([22], p 23), and using that the range of interaction of Pt atoms with water is
of the order of 2–3 Å (see e.g. [32]), one finds a ratio of 3.92 Å/2.5 Å = 1.568.

To test the applicability of describing these fcc nanoclusters as spheres with a constant
density, one should compare the effective point–nanoparticle potential Vpn = ρV LJ

0 to the
result of summing the potentials φLJ between the point particle and each of the atoms in
the fcc nanoparticle. Similarly, the effective potential Vnn = ρ2V LJ

00 between two equally
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Figure 9. Comparison of the fitted radius s and the a priori radius s∗ of the
fcc nanoparticles, as a function of the cube root of the number of atoms M in
the nanoparticles. The fit is based on minimizing Δ̃pn(s), but minimizing Δ̃nn(s)
instead gives indistinguishable results.

sized nanoparticles should be compared to the result of summing the potentials between
each of the atoms of one of the nanoparticles and each of the atoms in the other.

However, there are two difficulties in performing these comparisons. First, the
effective potentials are spherically symmetric, but the summed potentials will not be, since
the fcc nanoparticles are not truly spherically symmetric. Therefore, the comparison will
be made with the summed potentials averaged over all orientations of the nanoparticles,
which will be denoted by V sum

pn and V sum
nn .

The second problem with the comparison is that the radius s of the nanoparticle,
which enters as a parameter in the effective potentials, is not well defined. A reasonable
a priori radius would be s∗ = [3M/(4πρ̄)]1/3, but other values for the radius s close to s∗

are just as reasonable. Thus, the radius may be viewed as a fitting parameter, which will
be adjusted to minimize the difference between the effective and the summed potential.
To be precise, the following quantities are minimized by varying s:

Δ̃pn =

{∫ ′
dr

[
V sum

pn (r) − ρ(s)V LJ
0 (r)

]2
}1/2

Δ̃nn =

{∫ ′
dr

[
V sum

nn (r) − ρ2(s)V LJ
00 (r)

]2
}1/2

.

(102)

Here, ρ(s) = 3M/(4πs3), and the prime denotes the restriction on the integration that
V sum

pn (r) < 3V ∗
pn or V sum

nn (r) < 3V ∗
nn, respectively, where V ∗

pn and V ∗
nn are the absolute values

of the minima of V sum
pn and V sum

nn . These restrictions are needed to make the integrals
converge, but the results depend very little on the precise choice of the restriction. For
instance, changing the restriction to 2V ∗ instead of 3V ∗ shifts the values for the radii s
only by an amount of the order of 10−4.

The values of the radius that result from minimizing Δ̃pn for the 206 cluster
configurations with M < 20 000 are shown in figure 9. It is seen that except for some
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Figure 10. Deviations Δpn and Δnn of the effective potentials from the atom-by-
atom summed potentials for the fcc nanoparticles as a function of the cube root
of the number of atoms M in the cluster.

of the smaller clusters, the values of fitted radii s typically lie very close to the a priori
radius s∗. Minimizing Δ̃nn instead results in the same values for the radii to within 0.3%.

To get an idea of the accuracy of the fits as a function of nanoparticle size, one may
investigate the values of the dimensionless deviations

Δpn =
Δ̃pn

R
1/2
pn V ∗

pn

; Δnn =
Δ̃nn

R
1/2
nn V ∗

nn

.

The length scales Rpn and Rnn are chosen as the lengths of the intervals contributing
99.9% of the values of the integrals in equations (102). This construction of Rpn and Rnn

typically gives Rpn ≈ 1.35 and Rnn ≈ 2 for the size of clusters investigated here, and
for simplicity, these values of Rpn and Rnn were used for all clusters. The dimensionless
deviations are plotted in figure 10. One sees a high degree of correlation between the
accuracy of the effective potential for a nanoparticle and point particle and the accuracy
of the effective potential between two nanoparticles. The deviations are furthermore
typically small, indicating that there is good agreement between the effective potentials
and the sum of atom–atom potentials, although the deviations are larger for specific cluster
sizes. According to figure 10, for nanoparticles of a size M greater than about 123, using
the effective potentials leads to deviations less than 5%. To get an idea of the physical
order of magnitude, using units borrowed from silver nanoparticles (see above), one sees
that nanoparticles of this size have a diameter of about 10 nm, which seems a physically
plausible lower limit of the applicability of the effective potentials.

As extreme examples, figure 11 shows a case of very good agreement and figure 12
shows a case of poorer agreement. In these figures, the effective potentials and the summed
potentials are compared for M = 18 053 with s = 16.27 and M = 17 357 with s = 16.04,
respectively. Note that the agreement is never very bad, but for the latter, the depth
of the minimum is somewhat underestimated by the effective potentials, as the insets of
figure 12 show.
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Figure 11. An example of very good agreement between the effective and summed
potentials, which occurs for an fcc nanocluster of size M = 18053 with an effective
radius of 16.27 (in dimensionless units). Crosses represent the orientationally
averaged summed potentials V sum

pn (left) and V sum
nn (right), while the solid lines

are the effective potentials Vpn = ρV LJ
0 (left) and Vnn = ρ2V LJ

00 (right).

Figure 12. An example of poorer agreement between the effective and summed
potentials, which occurs for an fcc nanocluster of size M = 17357 with an effective
radius of 16.04 (dimensionless units). Solid lines represent the effective potentials
Vpn = ρV LJ

0 (left) and Vnn = ρ2V LJ
00 (right), while crosses are the orientationally

averaged summed potentials V sum
pn (left) and V sum

nn (right). The insets zoom in
on the minima of the potentials, and show that their depths are underestimated
by the effective potentials.

It is hard to say in general why the smooth, constant density description works
better for some clusters than for others. For some of the smaller nanoclusters with
poorer agreement, inspecting the spatial structure of the nanocluster shows a rather rough
surface, which could be the explanation. But for the larger nanoparticles, such differences
in roughness are hard to distinguish.

7. Discussion

A general effective description for rigid nanoparticles was presented, starting from a
smoothing procedure in which the real spatial density profile inside the nanoparticles
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is replaced by a spherically symmetric one. The resulting effective interactions between a
nanoparticle and a point particle as well as between two nanoparticles are then given by
spherically symmetric potentials, thus greatly simplifying the description over an all-atom
model.

The main results of this approach are the formulations of the effective potentials
in terms of auxiliary potentials, equations (17) and (18), which tend to have a simpler
form than the full effective potential and which furthermore provide a unified description
of overlapping and non-overlapping configurations. While the latter is usually the only
physical situation, overlap can occur for instance for hollow nanoparticles containing other
smaller particles. The auxiliary potentials are related to the basic interaction potentials
through equations (19) and (20). Furthermore, the effective potentials for hollow particles
were found to be related to those for solid nanoparticles by simple differentiation with
respect to the radii of the nanoparticles (see equations (47) and (50)), and as such also
allow a formulation in terms of auxiliary potentials (see section 4).

It should be realized that elastic effects are thrown out of the description by assuming
rigidity of nanoparticles. Rigidity of nanoparticles is not an uncommon assumption (see
e.g. [1, 5], [14]–[16], [20] and [21]), but of course, there are physical situations in which
this assumption is not appropriate, especially at higher energies.

As an application of the formalism, explicit effective pair potentials for solid and
hollow nanoparticles were obtained for various basic pair potentials. Different pair
potentials have different applications. For instance, the Lennard-Jones potential is a
general-purpose potential, while the Buckingham potential is suited to describe the physics
of particles close together such as in high pressure systems. These basic potentials result
in effective nanoparticle potentials with hard cores plus a soft potential. They reduce
in limiting cases to some of the existing model potentials for colloids, such as that of
hard spheres and the Hamaker potential [20, 23, 11], but not to more ad hoc models
such as the description of a colloid as a single big Lennard-Jones particle [24], shifted
Lennard-Jones potentials [7], and variants thereof [25]. In contrast, the Morse potential is
able to describe bounded systems or penetrable particles, making it possible to model
nanoparticles that could passively capture and trap specific types of particles. The
resulting effective potentials could have applications in modeling drug delivery by (hollow)
nanoparticles [9] and viral capsids [10].

For the case of a Lennard-Jones basic potential, a comparison was carried out with
an atomic model of a nanocluster. In this model, the atoms making up the nanoparticle
were assumed to be arranged in an fcc lattice structure. To find approximate spherical
structures, the atoms were restricted to lying within a certain distance from the central
atom in the nanocluster. Configurations with up to 19 861 atoms were studied. The
effective potentials were compared with the orientationally averaged sum of Lennard-
Jones potentials due to the individual atoms. The agreement tends to be very good,
provided the radius in the effective description is treated as a fitting parameter. For
some configurations, however, the fitting procedure underestimates the depth of the
minimum of the potentials. The shallower depth may be due to surface roughness of
these structures, which is caused by the imposed fcc structure and unlikely to be relevant
for real nanoclusters.

The application of the explicit expressions for the effective potentials in numerical
studies of spherical nanoparticles is in principle straightforward. In fact, the potentials
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in equations (96) and (99) have already been used in a numerical study of single-
particle transport in an equilibrium nanofluid composed of solid nanoparticles and
fluid particles interacting through Lennard-Jones interactions, where the validity of
a Gaussian approximation to the Van Hove self-correlation function was investigated,
and found to hold up to picosecond timescales for the fluid particles, and up to 5–
10 times longer (depending on temperature) for nanoparticles with a size of about
2 nm [28].

Given the explicit expressions for the effective potentials, the description allows a
fairly direct route toward a qualitative model for a given system of nanoparticles in a
fluid, since reasonable values for the parameters for commonly used pair potentials are
available in the literature [33], while the number of atoms in a nanoparticle and its radius
could be taken from experiments or theoretical calculations [12]. Furthermore, the effective
potentials have a physical range based on the interaction of their constituents rather than
on their radius. Therefore, the effective potentials that were derived here are expected to
be useful for the qualitative description of a wide variety of systems, from mono-disperse
nanoparticles in a fluid to mixtures of different kinds of fluid particles, nanoclusters or
buckyballs.

A number of interesting extensions present themselves for future research. For
instance, while the nanoparticles were assumed to be composed of one kind of particle
only, potentials for nanoparticles composed of several kinds of particles can also be derived
within the current context if the distribution of the kinds is either homogeneously mixed
or distributed in spherical shells (so-called core–shell nanoparticles [6, 34]). The spherical
symmetry of the effective potentials, which decouples the rotational and translational
degrees of freedom, could be lifted to extend the model to include rotational motion.
For specific cases, effective potentials can still be found through integration [17]–[19].
In general, the extension to non-spherical objects may be accomplished by adding
interaction sites on the surface of the nanoparticle or a multipole expansion. As long
as the orientationally dependent potential is available, there are no obstacles in molecular
dynamics simulations of such systems [35]. Furthermore, combining the current model
with the mesoscopic fluid model of Malevanets and Kapral [36] would yield a numerically
efficient model of larger nanoparticles and colloids that includes hydrodynamic effects.
These avenues are currently being investigated.
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Appendix. The kernel Kij

The integral in the expression for the kernel Kij in equation (14) will be worked out now.
Using equation (9) and the binomial formula for (x− y)i+2, one finds, after resummation,
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that

Kij(x, s1, s2) =

∫ y2

y1

dy
4π2Θ(D − |x|)
(i + 2)(j + 2)

[si+2
1 − (x − y)i+2][sj+2

2 − yj+2] (A.1)

=
4π2Θ(D − |x|)si+2

1 sj+2
2

(i + 2)(j + 2)

[

y − s1

i + 3

(
x + y

s1

)i+3

+
s2

j + 3

(
y

s2

)j+3 {(
x

s1

)i+2

F

(

−i − 2, j + 3; j + 4;−y

x

)

− 1

}]y2

y1

(A.2)

with y1 = max(−s2, x−s1) and y2 = min(s2, x+s1), which are due to the finite support for
the kernels Ki and Kj , and F is the hypergeometric function [37]. Despite its complicated
appearance, equation (A.2) is simply a piecewise polynomial in x of degree i + j + 5 at
most. To see this, it is useful to distinguish the following four non-trivial cases: case
1 : x > 0 and |d| < |x| < D, for which y1 = x − s1 and y2 = s2; case 2 : d > 0 and
|x| < |d|, giving y1 = −s2 and y2 = s2; case 3 : d < 0 and |x| < |d|, giving y1 = x− s1 and
y2 = x + s1; and case 4 : x < 0 and |d| < |x| < D, for which y1 = −s2 and y2 = x + s1.
There are in fact only two independent cases, because case 3 can be obtained from the
result of case 2 by interchanging s1 and s2 as well as i and j (which will also flip the sign
of d), while the result for case 4 can be obtained from that of case 1 by setting s1 to −s2,
s2 to −s1 and introducing a minus sign, as can be proved by changing the integration
variable in equation (A.1) from y to x − y. Thus, one only needs to consider case 1 and
case 2. Changing the integration variable from y to z = s2 − y and using the binomial
formula, equation (A.1) for case 1 yields

Kij(x, s1, s2) = (i + 2)!(j + 2)!

i+j+2∑

m=0

(D − x)m+3

(m + 3)!

×
min(i+2,m+1)∑

k=max(1,m−j)

(−s1)
i+2−k

(i + 2 − k)!

sj−m+k
2

(j − m + k)!
, (A.3)

which is polynomial in x of degree i+ j +5, while for case 2 the integral in equation (A.1)
can be found by using the binomial formula for (x − y)i+2, giving a polynomial of degree
i + 2, i.e.

Kij(x, s1, s2) =
8π2sj+3

2

i + 2

[
si+2
1

j + 3
−

i/2+1∑

k=0

(
i + 2

2k

)
si+2−2k
2 x2k

(i + 3 − 2k)(i + j + 5 − 2k)

]

. (A.4)
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