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In this paper a method of obtaining smooth analytical estimates of probability densities, radial
distribution functions, and potentials of mean force from sampled data in a statistically controlled
fashion is presented. The approach is general and can be applied to any density of a single random
variable. The method outlined here avoids the use of histograms, which require the specification of
a physical parameter �bin size� and tend to give noisy results. The technique is an extension of the
Berg–Harris method �B. A. Berg and R. C. Harris, Comput. Phys. Commun. 179, 443 �2008��,
which is typically inaccurate for radial distribution functions and potentials of mean force due to a
nonuniform Jacobian factor. In addition, the standard method often requires a large number of
Fourier modes to represent radial distribution functions, which tends to lead to oscillatory fits. It is
shown that the issues of poor sampling due to a Jacobian factor can be resolved using a biased
resampling scheme, while the requirement of a large number of Fourier modes is mitigated through
an automated piecewise construction approach. The method is demonstrated by analyzing the radial
distribution functions in an energy-discretized water model. In addition, the fitting procedure is
illustrated on three more applications for which the original Berg–Harris method is not suitable,
namely, a random variable with a discontinuous probability density, a density with long tails, and the
distribution of the first arrival times of a diffusing particle to a sphere, which has both long tails and
short-time structure. In all cases, the resampled, piecewise analytical fit outperforms the histogram
and the original Berg–Harris method. © 2010 American Institute of Physics.
�doi:10.1063/1.3366523�

I. INTRODUCTION

In many situations the probability to find a particle at a
certain distance from a given other particle is of interest.
This probability is given by the radial distribution function.
In addition to providing detailed information on the local
structure of a system, one can often express thermodynamic
quantities such as the pressure, energy, and compressibility
in terms of the radial distribution functions.1 Furthermore,
the radial distribution function can be reformulated in terms
of a potential of mean force, which is of great importance in
multiscale simulations that take the potential of mean force
as input in Langevin or Brownian dynamics simulations.2,3

Radial distribution functions are usually constructed in
simulations by forming a histogram of sampled interparticle
distances.2 However, histograms contain the bin size as a
free parameter and can be rather noisy for a poorly selected
value of this parameter. For probability densities, an alterna-
tive method recently proposed by Berg and Harris avoids
histograms and yields a smooth analytical form for the prob-
ability density which describes the sample data statistically
at least as well as the noisy histogram.4 This method has
already proven useful in the context of the computation of
quantum free energy differences from nonequilibrium work
distributions,5 the determination of the density in Bose–

Einstein condensates,6 and in the distribution of a reaction
coordinate in simulations of chemical reactions.7

Having a similar method for potentials of mean force
and radial distribution functions would have many advan-
tages. As in the Berg–Harris method, such an approach
would avoid the noise that accompanies the standard histo-
gram method, while no a priori choice of bin size is re-
quired. Furthermore, a smooth radial distribution would give
a better representation of the potential of mean force �which
is related to the logarithm of the radial distribution function�
and allows the function to be evaluated at any point in the
range over which it is defined. Finally, the expressions for
the pressure, energy, and compressibility in terms of the ra-
dial distribution functions involve integrals of the radial dis-
tribution function over r. Such integrals can be evaluated
more accurately from an analytic form than from a histo-
gram, whose accuracy is restricted by the bin size.

The purpose of this paper is to develop an approach to
obtain smooth radial distribution functions and potentials of
mean force from sampled interparticle distances. The result-
ing method turns out to be suitable not just for radial distri-
bution functions and potentials of mean force but also for a
large class of densities of single random variables.

The paper is structured as follows. Section II presents a
model of water in which rigid molecules interact through a
discretized potential. Construction of radial distribution func-
tions from data derived from this model will be used as aa�Electronic mail: rzon@chem.utoronto.ca.
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running test case. This section also contains some details on
the generation of sampled data through simulation. The
Berg–Harris method for smoothing probability densities in a
statistically controlled fashion and the connection between
probability distribution functions and radial distribution
functions are briefly reviewed in Sec. III. In Sec. IV, simu-
lation results are presented that show the shortcoming of the
Berg–Harris method for radial distribution functions. The ex-
tended method is developed in Sec. V, with Sec. V A con-
taining an explanation for the poor performance and its so-
lution through statistical resampling. Section V B addresses
an additional problem related to the particular shape of radial
distribution functions, which is solved by extending the
method to use piecewise analytic functions. In Sec. VI, the
generality of the method is illustrated by presenting the re-
sults of applying the method to data drawn from three differ-
ent probability densities which are problematic for the origi-
nal Berg–Harris method. The paper concludes with a
discussion in Sec. VII.

II. SYSTEM: A DISCRETE WATER MODEL

In the development of the smooth approximation method
below, a model of rigid water molecules subject to a dis-
cretized interaction potential between the molecules will be
used as a running test case for the construction of radial
distribution functions. Since a water molecule consists of
two kinds of atoms �oxygen and hydrogen�, there are three
radial distribution functions in this system, gOO, gOH, and
gHH, which turn out to have quite different character and
therefore give a more stringent test of the smooth fitting
methods than a single-atom model would.

The relative distances between the atomic sites in mol-
ecules are fixed, making the molecules rigid bodies. Each
state of each body i can therefore be described by its center-
of-mass position ri, its orientation or attitude matrix Ai that
transforms coordinates from the laboratory frame to a body-
fixed frame for molecule i, and the associated linear and
angular momenta. Here the body-fixed frame is chosen so
that the third row of the matrix Ai corresponds to the direc-
tion of the molecule’s dipole �i, whose magnitude is fixed at
a value �.

The interaction potential between a pair of molecules i
and j is a discrete version of the soft sticky dipole
potential,8–11

vij = vLJ�ri − r j� + vdp�ri − r j,Ai,A j� + vsp�ri − r j,Ai,A j� ,

�1�

where the Lennard-Jones, dipole, and sticky parts of the po-
tential are, respectively, given by

vlj�r� = 4����

r
�12

− ��

r
�6� , �2�

vdp�r,Ai,A j� =
�i · � j

r3 −
�i · r� j · r

r5 , �3�

vsp�r,Ai,A j� =
v0

2
�s�r�	sin �ij sin 2�ij cos 2�ij

+ sin � ji sin 2� ji cos 2� ji


+ s��r�	�cos �ij − 0.6�2�cos �ij + 0.8�2

+ �cos � ji − 0.6�2�cos � ji + 0.8�2 − 2�0
� ,

�4�

where �ij and �ij are the conventional spherical angles of the
vector Air and � ji and � ji are those of A jr. Finally, the
switching function s�r� is defined as

s�r� = �
1 for r � rL

�rU − r�2�rU + 2r − 3rL�
�rU − rL�3 for rL � r � rU

0 for r � rU,
� �5�

while s��r� is given by the same form with primed param-
eters rL� and rU� .

Here, the so-called SSD/E reparametrization of the
model was used, for which the parameter values are �
=0.152 kcal /mol, �=3.035 Å, �=2.42 D, v0

=3.90 kcal /mol, and �0=0.07715, while the cutoff param-
eters in the functions s and s� are taken to be rL=2.4 Å,
rU=3.8 Å, rL�=2.75 Å, and rU� =3.35 Å.11

The discontinuous interaction potential in our system is
obtained from the smooth potential by the controlled energy
discretization method presented in Ref. 12. In this discreti-
zation, a cutoff naturally arises, and therefore no reaction
field was included.

The natural simulation technique for systems with dis-
cretized potentials is discontinuous molecular dynamics
�DMD�.12–14 In DMD, the dynamics of the system is free �no
forces or torques are present� in between interaction events at
which linear and angular momenta change. By its very na-
ture, the energy-discretization scheme used in DMD is sym-
plectic, time reversible, and strictly conserves the total �dis-
cretized� energy. It has no fixed time step, but moves from
event to event. The event frequency, which sets the effi-
ciency of the method to a large degree, is determined by the
level of discretization of the potential energy: the finer the
discretization, the more events occur. One typically finds that
a discretization of the order of 1

2kBT already suffices for a
reasonably accurate simulation of the smooth system.12 In
the simulations of which the results are presented below, the
discretization of the potential energy was set to 1

4kBT.
The orientational dynamics of free rigid bodies is an

important aspect in the calculation of interaction times.13,14

The solution of the equations of motion for the angular mo-
menta and attitude matrix A depends on the symmetry of the
body through the principal moments of inertia. Although any
value of the principal moments can be utilized to sample
configurations of a system of rigid molecules, the DMD
simulations presented here made use of the exact solution of
the equations of motion for a free, asymmetric rigid
rotor,13,15 and hence were based on the exact dynamics of the
system.
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At the time of a distance measurement in the simulation,
the forces and torques are most likely zero, since these quan-
tities are nonzero only at discrete time points. This makes
alternative smoothing methods, such as the weighted residual
method16 and methods based on equilibrium identities using
�smooth� forces,17,18 not applicable here. Since only the in-
terparticle distances are available as input for the determina-
tion of the analytically fitted radial distribution functions, the
comparison with histogram-based radial distribution func-
tions is more equitable.

III. REVIEW

A. Smoothing probability densities
with the Berg–Harris method

Consider a random variable r which has a probability
density p�r�. Suppose that one has a sample of n data points
	ri
 that are independently drawn from the density p�r�. How
can one estimate p�r� from the data points? One way is to bin
the data points into a histogram. Because histograms are
quite sensitive to statistical noise, Berg and Harris developed
the following alternative procedure to obtain an analytical
estimate for the probability density from the data.4

In the Berg–Harris method, the data are first sorted such
that ri�ri+1. Using the sorted data, the empirical cumulative

distribution function F̄ is defined in the range �r1 ,rn� as

F̄�r� =
i

n
for ri 	 r � ri+1. �6�

Although F̄ becomes a better approximation to the true cu-
mulative distribution F�r�=rp�r��dr� with increasing
sample size n, it is a function with many steps for any finite
value of n so that its derivative is not analytic but rather
consists of delta functions.

The next step consists of writing the function F̄ as a sum
of a linear term and a Fourier expansion. The expansion is
truncated at the mth term,

F̄�r� � Fm�r� � F0�r� + �
j=1

m

dj sin�j
F0�r�� , �7�

where the linear term is defined as

F0�r� =
r − r1

rn − r1
. �8�

Furthermore, the Fourier coefficients dj in Eq. �7� are deter-
mined from

dj =
2

rn − r1
�

r1

rn

�F̄�r� − F0�r��sin�j
F0�r��dr . �9�

When F̄ is approximated by Fm, the probability density p is
approximately

pm�r� =
1

rn − r1
�1 + 
�

j=1

m

djj cos�j
F0�r��� . �10�

Because F̄−F0 is zero at the end points of the interval
�r1 ,rn�, and the Fourier modes form a complete orthonormal

basis of the space of such functions, the empirical cumula-

tive distribution F̄ and the associated probability density are
reconstructed exactly by Eqs. �7� and �10� as m→�. How-
ever, as mentioned above, this limit would yield a series of
delta functions for the probability density p̄= p�. The aim is
to truncate the series at a level m which is not too high that
one is fitting the noise, but high enough to give a good

smooth approximation to F̄ and p̄.
The final step of the procedure is therefore to find the

appropriate number of Fourier terms m in a statistically con-
trolled fashion. The value of m is determined here using the
Kolmogorov–Smirnov �KS� test.4,19 This test determines
how likely it is that the difference between the empirical

cumulative distribution function F̄ and its analytical approxi-
mation Fm is due to noise.20 The test takes the maximum

variation Dm between F̄ and Fm over the sampled points

�Dm=maxi=1. . .n�Fm�ri�− F̄�ri��� and returns a probability Qm

=Q�Dm� that the difference between the two cumulative dis-
tribution functions is due to chance. The functional depen-
dence of Q on D is known to a good �asymptotic�
approximation.21

A small value of Qm indicates that the difference be-
tween the cumulative distribution functions is statistically
significant, i.e., the quality of the expansion Fm is insufficient
to represent the data. One therefore carries out a process of
progressively increasing the number of Fourier modes m and
evaluating Fm as well as Qm until the value of Qm is larger
than some convergence threshold Qcut. A reasonable value
for this convergence value is Qcut=0.6.

In Ref. 5, errors were estimated using the jackknife
algorithm,22 and the same method will be used here. How-
ever, since the interparticle distance data naturally come in
blocks, each corresponding to a single configuration, not all
data points are independent. To account for this, we use a
block version of the jackknife method, in which a single
block of data is omitted in each jackknife sample.23

B. From probability densities to potentials
of mean force

To be able to apply the above smoothing method to ra-
dial distributions, for which histograms are presently the
method of choice, one has to make the connection between a
probability density on the one hand, and the radial distribu-
tion function and potentials of mean force on the other hand.
This connection will be briefly reviewed here because some
of the details are needed below.

Consider a system of a single type of particle, in which
the number of particles is N and the volume of the system is
V. The radial distribution function, denoted by g�r�, is the
density of particles at a distance r away from a chosen first
particle relative to the mean density N /V. The true density at
a distance r from a first particle is thus �N /V�g�r�. The mean
number of particles at a distance between r and dr from a
given particle is then n�r�= �N /V�g�r�4
r2dr. The Jacobian
factor 4
r2, which is, of course, the surface area of a sphere
with radius r, will play an important role below. The prob-
ability of a particle being at a distance r is equal to the
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number of particles with this r, divided by the total number
of particles, N, i.e., p�r�dr=n�r� /N=g�r�4
r2dr /V, so one
has the relation

g�r� =
V

4
r2 p�r� . �11�

Systems with different types of particles give rise to dif-
ferent radial distribution functions gij�r�, where i and j label
the kinds of particles. A similar argument to that above leads
to the relation

gij�r� =
V

4
r2 pij�r� , �12�

where pij�r� is the probability density of distances between a
particle j and a particle i. Once gij�r� is known, the potential
of mean force �ij is found from1

�ij�r� = − kBT ln gij�r� , �13�

where T is the temperature of the system and kB is Boltz-
mann’s constant.

A further consideration for the applicability of the Berg–
Harris method to radial distribution functions is whether the
KS test may be used at all. The KS test assumes that the
samples are independently drawn. Correlation between the
samples may result in a bias in the radial distribution func-
tions. Since nearby particles in an instantaneous configura-
tion of the system are correlated, this is potentially an issue.
If, however, the system is sufficiently large, only a small
fraction of the samples in a single configuration will be spa-
tially correlated, making the KS test applicable to a very
good approximation. Furthermore, if one ensures that the
configurations are taken from the simulation at sufficiently
large time intervals, time correlations do not pose a problem
either.

IV. POOR PERFORMANCE OF THE
STRAIGHTFORWARD SMOOTHING APPLIED
TO RADIAL DISTRIBUTION FUNCTIONS

Using the Berg–Harris method to get a smooth probabil-
ity densities p�r� from a sample of interparticle distances,
one expects to obtain a good, smooth fit to g�r� by using Eq.
�12�. To test this expectation, the system of pure water in
which rigid water molecules interact via a discretized poten-
tial energy derived from the soft sticky dipole model de-
scribed in Sec. II was simulated. For all simulation results
presented in this section, the parameters of the water model
were as follows. The temperature is set at T=298 K, the
number of particles is N=512, the cubic simulation box has
sides of length L=24.8 Å, so that the density is 1.0 kg/l. The
principal moments of inertia of a rigid water molecule are
Ix=0.033 736 5mH2O Å2, Iy =0.063 504 0mH2O Å2, and Iz

=0.097 240 5mH2O Å2, where mH2O is the molecular mass of
water. After equilibration, the simulations were run for 8 ps,
in which the interparticle distances were sampled every 2 ps
�long enough for the system to decorrelate� for a total of four
configurations.

From these data, the radial distributions gOO, gOH, and
gHH were determined in the simulations through histograms

and by following the smoothing procedure of Sec. III A, us-
ing a value for Qcut of 0.6. The results for the three radial
distribution functions are shown in Fig. 1. Clearly, the two
methods do not agree very well at short interparticle separa-
tions, despite the fact that the smooth distance distributions
are statistically good descriptions of the distance data accord-
ing to the KS test. In particular, note that the peak heights
defining the first solvation shell are not well described.

V. EXTENDING THE BERG–HARRIS METHOD

Given these unsatisfactory results, the histogram method
would be preferred over the straightforward application of
the Berg–Harris method. But there is a way to fix the
smoothing method to the extent that the smoothing method
becomes preferable over the histogram method. To under-
stand how to fix the problem, one first needs to understand
its underlying causes.
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FIG. 1. Performance of the straightforward application of the Berg–Harris
smoothing methods applied to the radial distribution functions gOO �a�, gOH

�b�, and gHH �c� of the discretized water model. For comparison, the results
from the histogram method are also shown �with error bars representing
95% confidence intervals at selected points�. Here the range over which the
radial distribution functions are analyzed is defined to be �0,L /2�, with
L /2=12.4 Å.
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A. Overrepresented large distances

1. Problematic Jacobian

The convergence criterion of the smooth approximation
relies on the KS test.4,19 This test is based only on the maxi-

mum variation Dm between F̄ and Fm and is more sensitive
to typical data points than to outliers. Although this may
appear to be a contradiction at first glance, it is important
that the KS test depends on the maximum deviation in the
cumulative distribution function, rather than on the deviation
of the random variable from the mean. To see that outliers do
not constitute very deviant points in the cumulative distribu-
tion, suppose that, by chance, an outlier xout from the far left
tail of a distribution is found in a sample of size n. This
would yield an increase of magnitude of 1 /n for the empiri-

cal cumulative distribution F̄ at xout, while the cumulative
distribution F�x� is practically zero since x is in the region
where the distribution is very small. If Fm is not too bad an

approximation to F, F̄−Fm will also be of order 1 /n at xout.

However, the deviation between Fm and F̄ at other points x
depends more on the goodness of fit than on the sample size,
at least for points x in regions that contain a sizable fraction
of the samples: these are the “typical points.” For these
points, there is little sample-size dependence, so that to first

order in n, one has F̄−Fm=O�n0�. Since O�n−1��O�n0� for
large enough sample sizes, the outlier xout will not be seen as
the most deviant point in the KS test, but rather, some typical
value x will have the most deviant cumulative distribution.24

The above argument holds when the quality of the fit in
the typical region is poor. However, as the number of Fourier

modes used to fit F̄ is increased, the quality of the fit of the
cumulative distribution F improves in the typical region, and
the maximum deviation shifts to less probable values. Be-
cause the probability density function is small in the tails,
this maximum deviation of the distribution is not that large
and the convergence criterion �the KS test� is met, resulting
in a good fit in the typical region with a poor fit in the tails.

The Berg–Harris method of Sec. III A therefore works
well for probability densities without “long tails,” since typi-
cal values of the variable will be the values of interest. How-
ever, for radial distribution functions, the focus on typical
values is the origin of the difficulties getting the straightfor-
ward Berg–Harris method to work for radial distribution
functions �cf. Fig. 1�. Typical values of r are of no interest in
radial distribution functions. In a homogeneous system such
as a fluid, the typical distance between any two particles is
on the order of half the system size, L /2. The length scales of
interest in the radial distribution functions to describe local
structure are typically much smaller than that.

To make this point clearer, consider a dilute gas of hard
spheres with diameter �. In the limit of infinite dilution, the
radial distribution function g�r� is zero for r�� and unity
otherwise. The probability density p�r� of interparticle dis-
tances is then �cf. Eq. �11��

pdilute�r� = �0 for r � �

4
r2/V for r  � .
� �14�

Because of the Jacobian factor of 4
r2, the most likely val-
ues of r are of the order of the largest possible r, which is
L /2. This means that in a sample of interparticle distances in
the dilute hard sphere system, the large distance samples
�ri=O�L /2�� are much more abundant than the small dis-
tance samples �ri=O����. Thus, when approximating p�r� by
a smooth function using the KS test, the long-distance part
will be fitted very well, but the short-distance behavior �r
=O���� will not because the test used is sensitive to the
typical values of r, which are O�L /2�.

The conclusion that large distance values overwhelm the
smaller ones in which one is interested is valid beyond the
dilute hard sphere case, since the Jacobian factor in Eq. �14�
acts on long length scales and is therefore also present in
systems of higher density with non-negligible interactions.

A crude attempt at solving the large distance problem is
to impose a cutoff rcut on the allowed values of r in the
sample of inter-particle distances. This cutoff should be of
the order of the distance over which g�r� differs from one.
But to determine that distance one has to measure g�r�. Thus,
one would have to guess a value of the cutoff distance and
adjust it until g�r� approaches one within a certain accuracy
for r�rcut. Unfortunately, even when the cutoff is chosen in
this way, the results, although better than those in Fig. 1, are
still not very impressive, as Fig. 2 for the oxygen-oxygen
radial distribution function shows with rcut set to 7.44 Å
�using again Qcut=0.6�. One sees a lot of spurious oscilla-
tions in the smooth radial distribution functions, which are
due to the high number of Fourier modes needed to fit the
radial distribution function �m=18 in this case�. Furthermore,
these oscillations do not even agree within the 95% confi-
dence interval with the histogram result, deviating especially
for small distances r. The explanation is that the Jacobian
factor 4
r2 in Eq. �12� is still present within the restricted
sample r�rcut and causes the peaks at larger r values to be
fitted better than the peaks at smaller r values.
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FIG. 2. Result for gOO of using a cutoff in the straightforward Berg–Harris
smoothing, i.e., with the distance data restricted to r�rcut=7.44 Å. For
comparison, the results from the histogram method are also shown �with
error bars representing 95% confidence intervals shown at selected points�.
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2. Overcoming over-representation
through resampling

To remove the troublesome Jacobian factor in Eqs. �11�
and �12� altogether, one can resample the interparticle dis-
tances found in the simulation. The idea is to draw from the
original sample of distances, 	ri
, such that smaller values of
r are more likely than larger values by introducing a relative
bias weight w�ri� for each distance ri in the sample to con-
struct a new, resampled set 	r̃i
.

25 Given that the probability
density of the original sample points is p�r�=4
r2g�r� /V �cf.
Eq. �11��, and provided that subsequent resampled data
points are chosen independently with weight w�ri�, the prob-
ability density of the resampled points is given by

p̃�r� = k−1w�r�p�r� = z−1r2w�r�g�r� , �15�

where k=w�r�p�r�dr and z=kV / �4
� are constants. Note
that z may be determined from

z =
V

4

� p�r�w�r�dr =

V

4

�w� , �16�

which may be approximated by the average of the weight
over the samples,

�w� �
1

n
�
i=1

n

w�ri� . �17�

In the application to the radial distribution functions below,
we also obtained �w� from a numerical integration using the
biased analytic approximation for p̃, the result of which dif-
fered from that given by the simpler expression in Eq. �17�
by less than 0.1%.

The simplest way to counter the Jacobian factor 4
r2 in
Eq. �15� is to choose a weight,

w�r� =
1

r2 , �18�

which gives

g�r� = zp̃�r� , �19�

with

z �
4


Vn
�
i=1

n
1

ri
2 . �20�

In detail, the resampling leading to data with a probabil-
ity density p̃ can be performed as follows: Given the original
set 	ri
 one determines the weight for each data point as

wi = w�ri� =
1

ri
2 . �21�

One also determines the maximum weight,

wmax = max
i=1¯n

wi �22�

to convert the weights into probabilities,

pi =
wi

wmax
, �23�

which, by construction, lie between 0 and 1. Next, one takes
one of the original sample points ri at random �with equal
weight�, draws a random number � uniformly from the inter-
val �0,1� and if �� pi, one adds ri to the resampled data set
	r̃i
. The procedure is repeated until enough resampled points
have been gathered. There is some choice into what number
of resampled points is to be taken. In our implementation,
the number of resampled points is chosen to be the same as
the number of points in the original sample.

Note that Eq. �19� shows that the resampled probability
density p̃ and the radial distribution function g are propor-
tional to one another. Since g approaches one for large r, the
large values of r are no longer over-represented in p̃.

For the resampled data 	r̃i
, one can use the Berg–Harris
smoothing method of Sec. III A to obtain a smooth approxi-
mation to p̃. Figure 3 shows the effect of resampling on the
cumulative distribution functions associated with gOO of the
water model, using Qcut=0.6. It is evident that the small-r
tail of the unweighted �Berg–Harris� cumulative distribution
is much enhanced in the resampled cumulative distribution,
and therefore more relevant to the KS test. Note that we have
plotted only the fits, and not the empirical cumulative distri-
butions, because the fits are hard to distinguish from the
empirical cumulative distributions. The differences are easier
to see in the associated radial distributions, which are plotted
in Fig. 4. In contrast to Fig. 2, the smooth approximation
now follows the result of the histogram within error bars for
the whole range of r values. But like in Fig. 2, the suppos-
edly smooth gOO�r� exhibits fast oscillatory behavior within
those error bars. This oscillatory behavior will be addressed
next.

B. Hard-to-fit distribution functions

1. Unphysical oscillations

It is hard to reconcile the aim of having a smooth ap-
proximation to the radial distribution functions and the large
number of Fourier modes needed to approximate the shape
of g�r�, which starts out as a very flat function at small r,
then increases sharply, reaches a maximum not far beyond
this sharp rise, and then decays on a larger scale to 1 in an
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FIG. 3. The resampled and the standard Berg–Harris cumulative distribu-
tions associated with the radial distribution function gOO of the discrete
water model.
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oscillatory fashion. The peculiar shape of g�r� leads to the
oscillatory behavior seen in Figs. 2 and 4. Even when the
oscillations lie within error bars of the histogram results,
they reintroduce a remnant of the noise similar in magnitude
to that present in the histograms that one is trying to avoid.

It is conceivable that there are expansions other than the
Fourier expansion that are more suitable for describing a
sharply increasing function followed by a more moderate
behavior. However, it is not clear at present what this spe-
cialized expansion should be. Therefore, a systematic and
generic way will now be presented which avoids high-
frequency modes in parts of g�r� that do not require them.
This will also make the method more generally applicable to
discontinuous and other hard-to-fit densities.

We note that in Secs. V B 2 and V B 3, the resampling
explained in Sec. IV is supposed to have been performed on
the data already, and that the resampled data have been
sorted �r̃i	 r̃i+1�. For notational convenience, the tildes on r,
p, and F are omitted below.

2. Resolving the oscillation problem
using a piecewise approach

The decomposition of F̄ in Eq. �7� can be adjusted to
incorporate hard-to-fit radial distributions by allowing the
Fourier decomposition to be different on subintervals within
the total interval �r1 ,rn�. Let the full interval be divided into
k subintervals �a1 ,a2� , �a2 ,a3� , �a3 ,a4� , . . . , �ak ,ak+1�, where
a1=r1 and ak+1=rn. The intervals will be labeled by a Greek
index, which can run from 1 to k. How to choose the points
a� �where �=2. . .k, with a1=r1 fixed� will be discussed
later. Different intervals can have different numbers of
samples that fall within its range. The fraction of the samples
that fall within a given interval � is denoted by f�.

On each subinterval, F̄�r� is approximated by a linear
part and a truncated Fourier transform of the remainder.
Analogously to Eq. �8�, the linear part in interval � is given
by

F0��r� =
r − a�

a�+1 − a�

. �24�

Note that F0� ranges from 0 to 1 in the interval �. The

piecewise linear approximation to F̄ for r in interval � is
then

F0�r� = F̄�a�� + f�F0��r� , �25�

where it should be noted that

F̄�a�� = �
�=1

�−1

f�. �26�

An example of such F0�r� is shown in Fig. 5, based on data
from the oxygen-oxygen radial distribution function in the

water model �as explained below�. Approximations to F̄ be-
yond F0 are found by adding Fourier modes for each inter-
val,

F̄�r� � F0�r� + �
�=1

k

f����r��
j=1

m�

d�j sin�j
F0��r�� . �27�

Here, �� is the characteristic function on interval �, i.e.,

���r� = �1 for a� � r � a�+1

0 otherwise,
� �28�

and d�j is given by

d�j =
2

a�+1 − a�
�

a�

a�+1

�F̄��r� − F0��r��sin�j
F0��r�� ,

�29�

where

F̄��r� = f�
−1�F̄�r� − F̄�a��� . �30�

The function F̄��r� is the conditional empirical cumulative
probability distribution function for data points within inter-
val �. Equation �27� represents a piecewise analytic approxi-
mation to the cumulative distribution. Since the Fourier
modes form a complete orthonormal basis, the approxima-
tion becomes exact as m�→� for all �. As before, however,
the m� should not become too large to avoid spurious oscil-
lations, which only amounts to fitting the noise. One there-
fore defines a maximum number mmax of Fourier modes al-
lowed in each subinterval and subdivides intervals if the
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FIG. 4. The radial distribution function gOO of the discrete water model,
using the resampled smoothing method described. For comparison, the re-
sults from the histogram method are also shown �with error bars represent-
ing 95% confidence intervals at selected points�.
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FIG. 5. Illustration of a piecewise approximation F0 to the cumulative dis-
tribution. The function F0 �the solid line� is linear between the split points
a1 , . . . ,a5 �indicated by the dash vertical lines�. The function increases by an
amount f� between split points a� and a�+1. The values of a� and f� used in
this sketch roughly correspond to the piecewise analytic fit for the oxygen-
oxygen radial distribution function, which requires k=4 intervals to achieve
convergence.
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maximum number of modes is not sufficient for conver-
gence, as determined by the KS test.

The division of the original interval is chosen dynami-
cally as follows.

�1� Start with one interval.
�2� Increase m until Q�Qcut.
�3� If m exceeds mmax, find the most deviant point a ac-

cording to the KS test.
�4� Split the interval in two at the point a.
�5� Repeat for the conditional distribution for each interval

left and right of a.

Because the procedure is recursive, in each step the
original one-interval procedure is used, which one exception:
the allowable value of Q may be set to a lower value in a
subinterval, since there are fewer points in the interval and
therefore the interval carries less statistical weight. We have
not found a unique, statistically controlled way to adjust the
Qcut for subintervals, but found heuristically that scaling the
Qcut for interval � by f� avoids fitting the noise and leads to
a satisfactory overall Q value.

The recursive, multi-interval procedure is found to
greatly speedup the convergence of the approximation
scheme, leading to much lower m�, and thus fewer oscilla-
tions. It should be stressed that splitting at the most deviant
point a in the KS test is found to be essential here: choosing
a different splitting point does not improve the convergence
because the most deviant point is then still difficult to fit and
the Q value for the subinterval containing the most deviant
point remains the same.

Once the approximation in Eq. �27� has been obtained,
the probability density is given by

p�r� �
f�

a�+1 − a�
�1 + 
�

j=1

m�

d�j j cos�j
F0��r��� , �31�

where � is such that r� �a� ,a�+1�.
The results of applying the piecewise procedure to the

gOO of the water model are shown in Fig. 6 �remembering
that g=zp�, with mmax=14 and the initial Qcut set to 0.6.
While the method now works better than without the piece-
wise approach, it has one drawback: the derivative of the
approximate cumulative distribution function, which gives

g�r�, need not be a smooth function across the different in-
tervals. As a consequence, the result in Fig. 6 shows artificial
discontinuities. These discontinuities at the boundaries of the
intervals fall within the 95% confidence intervals �not shown
in Fig. 6�.

3. Dealing with spurious discontinuities

Provided the underlying probability distribution of the
samples is continuous, the spurious discontinuities that are
present in the piecewise analytic fit will get smaller as the
number of sample points increases. Nevertheless, for cases
with poor statistics, one would like to have an approach that
gives a continuous piecewise analytic fit to the distribution.
In fact, for some applications, having a continuous radial
distribution function is essential, such as for Brownian simu-
lations that take the potential of mean force as input. Even
though the discontinuities are within the statistical noise,
they would lead to sudden, unphysical changes in energy in
such applications.

There are many ways to get a continuous curve out of
the discontinuous one, but it should be remembered that one
is working within the statistical noise. We can therefore
choose any method as long as the “patch” is still statistically
reasonable. To determine the statistical suitability, one can
once again use the KS test on the patched fit.

We have chosen the following simple procedure: We ap-
ply a quadratic patch function around each discontinuity at
a�,

F�
patch�r� = �b��r − �a� − c���2 if r � �a� − c�,a��

b��r − �a� + c���2 if r � �a�,a� + c�� .
�
�32�

The width c� of the patch is adjustable, while the prefactor
b� follows from the requirement that the cumulative distri-
bution F+��F�

patch has a continuous derivative at r=a�. Pro-
vided the different patches do not overlap, this leads to a
value of

b� =
�p

4c�

, �33�

where �p is the height of the jump in the unpatched distri-
bution function.

Initially, each width c� is set equal to half the minimum
interval size on either side of the corresponding split point a�

to avoid overlap between the patches. The Q value of the
patched distribution is then determined, and if it is not
smaller than the Q value for the unpatched distribution, the
patch is accepted. Otherwise, the width of the patch is re-
duced by a factor of 2, until the Q value is acceptable.26 It
will be demonstrated below that this solves the problem of
spurious oscillations and discontinuities.

C. Final results

Figures 7 show the result of the resampled, piecewise
procedure for the three radial distribution functions of the
water model, gOO, gOH, and gHH, with mmax=14 and Qcut

=0.6. It is clear that the piecewise analytic fit is now
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FIG. 6. The radial distribution function gOO of the discrete water model,
using the first piecewise resampled smoothing method described in
Sec. V B 2. For comparison, the results from the histogram method are also
shown �error bars were omitted to make the comparison clearer�.
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smoother than the histogram, hardly shows any oscillations,
and is continuous. Furthermore, while error bars were omit-
ted in Fig. 7 for clarity, it was found that the histogram and
the patched, piecewise analytic results are in mutual agree-
ment within the 95% confidence intervals.

It may be argued that plotting the histograms using bars
is an unfair way of representing the histogram results. One
often takes the histograms and applies a cubic spline fit19 to
the results, which makes the graph seem smoother. There is
of course no a priori reason why the splined histogram
should represent the radial distribution function better. For
this reason, we have shown only “unsplined” histograms so
far. The comparison between the histograms and smooth ap-
proximations in these curves should really only be done at
the midpoint of the histogram bins. Now that the piecewise
analytic smoothing approach is fully developed, however, it
is interesting to see how it compares to a smoothed spline fit
of the histogram results. Figure 8 shows a plot of these two
types of smooth results for gOO. The bin size for the histo-
grams has been chosen such that the first peak of the radial
distribution is well resolved. One sees that the cubic spline fit
does a reasonable job for the first peak, but that in the second
peak in the radial distribution function the spline fit is still

noisy, while the statistically controlled piecewise analytic re-
sult is not. Thus, the splines cannot fix the roughness of the
histogram method, at least not when bin sizes are uniform.

To show how the piecewise analytic method performs
for potentials of mean force, the smooth potentials of mean
force between the different species corresponding to the ra-
dial distributions in Fig. 7 �cf. Eq. �13�� have been plotted in
Fig. 9. The results from the piecewise analytic method are
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FIG. 7. The resampled, piecewise analytic method applied to the radial
distribution functions gOO �panel �a��, gOH �panel �b��, and gHH �panel �c�� of
the discretized water model, using the patched piecewise resampled smooth-
ing method. For comparison, the results from the histogram method are also
shown, while error bars were omitted for clarity.
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FIG. 8. Comparison between the radial distribution function gOO of the
discrete water model obtained using the resampled piecewise analytic
method and using a spline fit to the histogram results �error bars were
omitted to make the comparison clearer�.
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FIG. 9. The resampled, piecewise analytic method applied to the potentials
of mean force �OO �panel �a��, �OH �panel �b��, and �HH �panel �c�� of the
discretized water model. For comparison, the results from the histogram
method are also shown.
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considerably smoother than the histogram results, but still
exhibit some roughness since they were based only on four
configurations.

VI. FURTHER APPLICATIONS

The piecewise approximation method is not specific to
radial distribution functions, but can help to fit any probabil-
ity density that is hard to fit with a truncated Fourier series.
Below, we will give several examples of such densities and
show the advantages of using the piecewise analytical ap-
proximation method.

A. A discontinuous density

Consider a random variable r with a distribution p given
by

p�r� = �
0 if r � 0

1 if 0 � r �
1
2

1
2 if 1

2 � r �
3
2

0 if r �
3
2 .

� �34�

Note that within the domain of this function �0, 3
2
�, there is a

discontinuity at r= 1
2 . Discontinuities are very poorly repre-

sented by truncated Fourier series.27

From the above distribution, 50 000 samples were drawn
and used as input to the piecewise analytic approximation
�with mmax=14 and the initial Qcut=0.6�, as well as to the
one-interval analytic approximation �with the same Qcut

=0.6 and unrestricted mmax� and the histogram method. The
results are shown in Fig. 10.

One clearly sees the trouble that the Berg–Harris one-
interval approximation has in capturing the discontinuity,
while the histogram is very noisy. The piecewise analytic
expansion, on the other hand, beautifully captures the whole
distribution; the automated procedure divides the interval
�0, 3

2
� in two at r= 1

2 and then needs zero Fourier modes to
approximate the separate pieces.

B. The standard Cauchy distribution

According to Berg and Harris,4 the original smoothing
method has trouble with densities with long tails. It is there-
fore interesting to see if the piecewise approach helps for
these kinds of densities as well. As an example, we consider
the standard Cauchy distribution,

p�r� =
1


�1 + r2�
. �35�

From this distribution, 50 000 samples were randomly
drawn and used in the piecewise approach �with mmax=14
and the initial Qcut=0.6�. The results are contrasted with
those of the histogram in Fig. 11. The piecewise smooth
approximation performs so well that it can hardly be distin-
guished from the Cauchy distribution.

Not plotted in Fig. 11 were the results of the original
Berg–Harris method, which, surprisingly, are so similar to
the piecewise approach that they would be hard to make out
in the figure. The only statistically significant difference be-
tween the two results is apparent in the height of the maxi-
mum, which the Berg–Harris fit slightly underestimates.

The success of both methods is illustrated further in Fig.
12, in which the errors in the piecewise and the one-interval
results are compared; the piecewise analytic error is overall
slightly smaller than that of the Berg–Harris method, but not
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FIG. 10. The piecewise analytic method applied to 50 000 samples drawn
from the discontinuous distribution of Sec. VI A. Also shown for compari-
son are the results from the histogram method and the Berg–Harris method.
For clarity, error bars on the smoothing methods and the histogram have
been omitted.
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FIG. 11. The piecewise analytic method applied to 50 000 samples drawn
from the Cauchy distribution �cf. Sec. VI B�. For comparison, the results
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FIG. 12. The error in the piecewise analytic method applied to 50 000
samples drawn from the Cauchy distribution �cf. Sec. VI B� as compared to
the exact form in Eq. �35�. The error is here defined as the deviation from
the exact result. For comparison, the errors in the Berg–Harris method are
also shown.
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by much. This success seems to contradict Berg and Harris’
warning against using the smoothing method for densities
with long tails. It is possible that the relatively high quality
of the fit in the simple approach is due to the symmetric
nature of the Cauchy density and its relative lack of struc-
ture.

A more stringent test of the method applied to long-
tailed distributions will be presented next.

C. First arrival time distribution of a diffusing particle
to a sphere

Consider a particle undergoing diffusion, starting at a
distance R0 from the origin, i.e., anywhere on a sphere of
radius R0. The distribution function p�r , t� of the diffusing
particle satisfies �tp=D�2p, where D is the self-diffusion
constant. Investigating the time t required to arrive anywhere
on the surface of a sphere of radius Rmin for the first time is
a classic case of a first passage problem.28 Such problems
have applications in the rate of molecules finding each other
in a solution and are a major determining factor of reaction
rates in diffusion limited reactions.

It turns out that the first arrival times are distributed
according to29

p�t� =
x

�4
Dt3
exp�−

x2

4Dt
� , �36�

where x=R0−Rmin. This distribution function has both short-
time structure and a long tail.

From the distribution in Eq. �36�, 100 000 samples were
randomly drawn, with parameters set at D=1, Rmin=1 �these
choices set the time and length units� and R0=10Rmin. The
piecewise approach was used to obtain an estimate of the
probability distribution �with mmax=14 and Qcut=0.6�, as
well as the one-interval analytic approximation �Qcut=0.6
and unrestricted mmax� and the histogram method. The results
are compared in Figs. 13 and 14.

While all methods work to some extent, the histogram
method would have to be tailored to the function in question
in order to be useful, with differently sized bins for different
values of t. The Berg–Harris method works reasonably well
without subdivisions, but exhibits fast oscillations in the tails
of the density, as becomes very apparent from Fig. 14. The
appearance of oscillations is not surprising when one consid-

ers that m=390 Fourier modes were needed for the Berg–
Harris fit! The piecewise analytic result does not exhibit fast
oscillations in the tail. Furthermore, the piecewise fit only
required a total of 28 Fourier modes distributed over eight
intervals. Although the piecewise result does have some
modulation within the error bars, we have checked that al-
most all of these disappear when one takes ten times as many
data points. At that level of statistics, the Berg–Harris results
still have oscillations in the tails and still require over 350
Fourier modes.

When the analytical form of p�t� is not known, such as
for absorption in nonspherical geometries, but samples 	ti

are available from numerical simulation, the piecewise ap-
proach would give the best description of p�t�: one that is
less noisy than the histogram construction and with fewer
oscillations than the one-interval Berg–Harris method.

VII. CONCLUSIONS

In this paper, a method to obtain smooth analytical esti-
mates of probability densities, radial distribution functions,
and potentials of mean force in a statistically controlled fash-
ion without using histograms was presented. This method
only uses direct samples of data �distance samples in the case
of radial distribution functions�. Since this method is ex-
pected to be generally useful, we have made our implemen-
tation, coded in c and c��, available on the web.30

While the method is based on the Berg–Harris method,
the statistical criterion used in that method is most sensitive
to the most common samples, which for radial distribution
functions are not the ones of physical interest. To make the
method work for radial distribution functions, a weighted
resampling of this data was required. Spurious oscillations,
allowed by the statistical noise, were eliminated using a
piecewise approach. In addition, one can optionally patch the
piecewise analytic form to avoid discontinuities within the
errors, if desired. The resampled, piecewise smoothing
method was demonstrated on data from event-driven DMD
simulations of water and proved to give a much smoother
result than the histogram method.

If the purpose of a simulation is just to get a good
smooth result for the radial distribution functions of a water
model, one could use the histogram method with longer
simulation runs to reduce the statistical uncertainties to some
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FIG. 13. The piecewise analytic method applied to 100 000 samples drawn
from the first passage time distribution of Sec. VI C. Also shown for com-
parison are the results from the histogram method and the Berg–Harris
method, as well as the exact result.
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predetermined limit. However, the histogram would still be
biased and known just at a lattice of points if a uniform bin
size is used. To get a smoother and less biased curve from the
histogram, one would also have to decrease the bin size by
hand. The piecewise analytic method makes such tuning un-
necessary. The method also make much longer runs unnec-
essary, since what appears to be very poor statistics for the
histogram method turns out to be quite reasonable statistics
for the piecewise analytic method. Remember that the same
set of interatom distance are used in both methods. Appar-
ently, there is much more statistics in the sample than the
histogram is using �something that Berg and Harris also
noticed4�.

For the test case considered here, the computational cost
of doing longer runs is not that large, so the advantages of
the piecewise analytic method may seem to be nice but not
necessary. In other applications, however, such as in studies
of the distribution of water molecules near a polymer or a
biomolecule �or near one of their polymer units�, better sta-
tistical information is costly to obtain because such systems
are not only computationally more demanding but also there
are far less samples available in a single configuration since
only the water molecules near the polymer or the biomol-
ecule are involved. The simulation run times would have to
be much larger to compensate for this poor statistics, if his-
tograms are used. In such cases, the piecewise analytic
method is expected to be advantageous since it appears able
to use more of the information present in the interparticle
distance sample.

The piecewise analytic method yields a smooth approxi-
mation to the probability density function, and the deviations
of the empirical distribution from this smooth curve are sup-
posed to be due to statistical noise. If this is true and the
methods are unbiased, then for large enough sample size n,
one would expect the distribution of errors in the probability
density functions to be Gaussian with a zero mean. To test
whether this is the case, the probability densities of the rela-
tive errors plotted in Fig. 14 were determined, both for the
Berg–Harris and for the piecewise analytic method.31 The
results are shown in Fig. 15. Within statistical uncertainty,

both distributions were found to be unbiased. Furthermore,
for the piecewise analytic results, the error densities are
roughly Gaussian. The errors from the Berg–Harris method,
on the other hand, seem to show deviations from Gaussian
behavior. The non-Gaussian nature of the errors of the Berg–
Harris method might be due to the fact that the sample noise
is fitted too closely since a large number of Fourier modes
are necessary, which means the distribution of errors follows
the distribution of the finite sample-size errors rather than
being truly random. The Gaussian nature of the errors in the
piecewise analytic method might be a confirmation that in
the smooth approximation, enough Fourier modes have be
taken into account for the remainder to be due to a random
statistical noise.

One of the nice features of the piecewise analytic
method is that one does not have to choose a bin size a
priori, as one has to do in the histogram method. It is none-
theless true that within the smoothing method, one is to some
extent free to choose the cutoff value Qcut of the “quality”
parameter Q and the maximum number mmax of basis func-
tions allowed in the expansion of each interval. Note that
both Qcut and mmax are dimensionless numbers and do not
contain physical parameters, in contrast to the bin size pa-
rameter required in the histogram approach. Setting Qcut too
low may result in a bad fit to the data, while setting mmax too
large may result in noise fitting and artificial oscillations. We
have found that Qcut�0.6 and mmax�14 as reasonable
choices, and these values were used in all the applications
presented above.

There is also some freedom in the choice of the set of
basis functions, as long as they form a complete set. The
Fourier basis used here is convenient and familiar, but others
are possible. For instance, in Ref. 5, a Chebyshev expansion
was used. This expansion was chosen over the Fourier ex-
pansion because it gave fewer oscillations. The piecewise
approach present in this paper, however, resolves the oscil-
lation problem as well and is expected to be less sensitive to
the choice of basis functions than the original Berg–Harris
method. Furthermore, the method was shown to also be ap-
plicable to other potentials of mean force and other probabil-
ity densities with a hard-to-fit character.
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