
Parallelizing a 1-Dim Nagel-Schreckenberg Traffic Model
Ramses van Zon∗

rzon@scinet.utoronto.ca
SciNet HPC Consortium, University of Toronto

Toronto, Ontario, Canada

Marcelo Ponce∗
m.ponce@utoronto.ca

Department of Computer and Mathematical Sciences,
University of Toronto Scarborough

Toronto, Ontario, Canada

ABSTRACT
The Nagel-Schreckenberg model is a stochastic one-dimensional
traffic model [1]. In this assignment, we guide students through
the process of implementing a shared-memory parallel and repro-
ducible version of an existing serial code that implements this
model, and to analyze its scaling behavior.

One of the key elements in this traffic model is the presence
of randomness, without which it would lack realistic phenomena
such as traffic jams. Its implementation thus requires techniques
associatedwithMonte Carlo simulations and pseudo-random number
generation (PRNG). PRNGs are notoriously tricky to deal with in
parallel when combined with the requirement of reproducibility.

This assignment was created for the graduate course PHY1610
Scientific Computing for Physicists at the University of Toronto,
which had its origin in the training program of the SciNet HPC
Consortium, and is also very suitable for other scientific disciplines.
Several variations of the assignment have been used over the years.

CCS CONCEPTS
• Computing methodologies → Shared memory algorithms;
Agent / discrete models; • Social and professional topics→ Stu-
dent assessment.

KEYWORDS
parallel programming, random numbers, reproducibility, simulation
ACM Reference Format:
Ramses van Zon andMarcelo Ponce. . Parallelizing a 1-DimNagel-Schreckenberg
Traffic Model. In Proceedings of EduHPC-23: Workshop on Education for High-
Performance Computing – Parallel Peachy Assigments (EduHPC-23 @ SC23).
ACM, New York, NY, USA, 8 pages.

1 RATIONALE
The main rationale of this assignment is to present students with a
time-stepping, stochastic simulation and guide them through the
process of creating a parallel implementation. In this case, the sys-
tem to simulate is the one-dimensional Nagel-Schreckenberg traffic
model[1]. Simulating this model requires using pseudo-random
number generators[2] in parallel, a tricky and often overlooked
topic in scientific computing courses.

We created this assignment for the “Scientific Computing” Physics
course taught to graduate students at the University of Toronto,
Canada. This course aims to teach students programming skills
to develop scientific applications, using C/C++, best practices in
software engineering, use of well established libraries, and train
∗Both authors contributed equally to this research.

EduHPC-23 @ SC23, Nov. 13, 2023, Denver, CO
.

them in parallel computing techniques such as shared-memory
programming (i.e. OpenMP) and distributed-memory programming
(i.e. MPI). The course, which consistently gets positive course evalu-
ations, is highly practical and applied, requiring students to develop
code on our teaching cluster1. This course originated in the train-
ing program of the SciNet HPC Consortium2. Because of this, the
course is also suitable for other scientific disciplines and many of
its topics also fit in an undergraduate curriculum.

2 CONCEPTS COVERED
The implementation of the Nagel-Schreckenberg traffic model re-
quires Monte Carlo techniques, which in turn require a pseudo-
random number generator (PRNG). Both of these are topics covered
in our course, and we use this model because it is an excellent and
easily relatable example of a stochastic simulation. For the assign-
ment, a starter code in C++ is given, and OpenMP should be used
to parallelize the code on shared-memory multi-core computers.

One of the nice features of this problem is that it can be solved
using either a grid representation or an agent-based one. The grid
representation assigns a value to every point on the circular road of
length 𝐿, while the agent-based implementation keeps track of the
positions and velocities of the𝑁 cars as (two) vectors of length𝑁 on
that circular road. Each implementation has its advantages and dis-
advantages, but in particular the agent-based approach significantly
simplifies the parallelization of PRNG.

Pseudo-random numbers are generated by sequentially deriv-
ing a number from an internal state that gets updated with every
next number. Before drawing the first number, the state is initial-
ized from a ‘seed’ value, which is often a single integer. The state
update algorithm is deterministic, and therefore the sequence is
reproducible if the same seed is used. The resulting sequence of
numbers should nonetheless be nearly indistinguishable from being
statistically independent and evenly distributed.

The circular road is also an example of periodic boundary condi-
tions, which have a wider applicability in computer simulations.

In the course, students are made familiar with programming
in C++, best practices in software development such as modular-
ity, version control, unit testing, documentation, use of external
libraries, make, file formats such as ASCII, binary, self-describing
formats, etc. To be able to do this assignment, students should al-
ready have good working knowledge of C++ and how to use the
C++11 standard random library. The starting code is moderately
modular, so familiarity with the concepts of C++ headers and imple-
mentation files is helpful. Knowledge of OpenMP is required to do
the assignment, including the parallel, for, and threadprivate
compiler directives. The assignment was designed and tested using
1https://docs.scinet.utoronto.ca/index.php/Teach
2https://scinet.courses

ar
X

iv
:2

30
9.

14
31

1v
1

 [
cs

.D
C

]
 2

5
Se

p
20

23

https://orcid.org/1234-5678-9012
https://docs.scinet.utoronto.ca/index.php/Teach
https://scinet.courses

EduHPC-23 @ SC23, Nov. 13, 2023, Denver, CO Ramses van Zon and Marcelo Ponce

Figure 1: Visualization of the 1-dim simulation of the Nagel-Schreckenberg traffic model – with 200 cars, length of 1000,
probability 𝑝 = 0.13 and maximum velocity 𝑣𝑚𝑎𝑥 = 5. The figure shows the emergence of irregularities ("traffic jams") in the
flow of the vehicles, and how it propagates backwards in position and forward in time. Without the random contributions to
the model, these irregularities would not occur.

the make utility and a simple makefile for building and running the
software. While we strongly recommend using this approach, it is
possible to use e.g. cmake as well, or to compile and run the code
manually. The code does not require external libraries.

One of the trickiest parts in the parallel implementation of this
model, and the one highlighted in this assignment, is dealing with
the PRNG in parallel in such a way that the output of the parallel
code exactly reproduces that of the serial code. Scientific repro-
ducibility is a very urgent and critical topic nowadays in many
scientific disciplines that heavily rely on computational technolo-
gies. Without this requirement, one possible solution to parallelize
the code and its PRNG function, would be to have each of the
threads sampling from its own random number generator, start-
ing from different seeds, thus having a different random number
sequence in each thread. However, this leads to different results
when the number of threads used changes. Although this may be
tolerable in some situations, reproducibility between using various
number of threads is a requirement of this assignment.

Reproducibility requires there to be only one sequence of random
numbers from which to sample and shared among the different
threads, so that one gets the same results on the same hardware,
independent of the number of threads. While generating a random
number sequence is generally a serial process and therefore not
parallelizable, for several random number generators, there are
algorithms for quickly “moving ahead”. Because these are not yet
implemented in the C++ standard random library, the starting code

of this assignment provides an implementation of this fast-forward
algorithm for one of the C++ linearly congruent generators.

3 LIMITATIONS
Depending on the parameters, software implementation and char-
acteristics of the hardware, the amount of computation can result
in similar or even smaller than the cost of I/O operations – e.g. if
we decide to save data at higher rates of iterations. We provide
examples of parameter files to help to emphasize the relevance of
the computational part of the simulation, and it is possible to switch
off output completely as well.

The scaling behavior that students may observe depends highly
on the level to which they managed to reduce the cost of fast-
forwarding the random number generators and other serial parts of
the code. Scaling beyond a single socket can be less than ideal due
to NUMA effects. Finally, using more virtual cores than physical
ones on CPUs which support “simultaneous multithreading” (also
known as “hyperthreading”) should be avoided; even if there is a
small benefit, the timing results would be hard to interpret.

4 VARIATIONS
In this assignment, we focus on the parallelization of the algorithm,
in particular the PRNG and parallelization aspects of its implemen-
tation using a shared-memory approach such as OpenMP. In other
variation that we have used in the past, we have asked students to
create their own serial implementation from scratch, or to adapt the
output to use the NetCDF library. This problem offers many other

Parallelizing a 1-Dim Nagel-Schreckenberg Traffic Model EduHPC-23 @ SC23, Nov. 13, 2023, Denver, CO

opportunities for variation that address other HPC aspects. One
could ask students to link to another PRNG library, to implement
a distributed-memory parallel code using the Message Passing In-
terface, to port the code to use Graphics Processing Units, to run a
series of parameter study cases and take advantage of embarrass-
ingly parallel jobs, to perform scaling analysis, to do a performance
analysis by profiling the code, to change boundary conditions, etc.

REFERENCES
[1] Kai Nagel and Michael Schreckenberg. 1992. A cellular automaton model for

freeway traffic. Journal de physique I 2, 12 (1992), 2221–2229.
[2] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. 2007. Numerical

Recipes. Cambridge University Press, Chapter 7.

A ONLINE RESOURCES
• Course Materials from our "Scientific Computing for Physi-
cists (Winter 2021)" course:
– Course Website:
https://education.scinet.utoronto.ca/course/view.php?id=
1155

– Assignment Part I: Serial Model
https://education.scinet.utoronto.ca/mod/assign/view.php?
id=2605

– Assignment Part II: Parallel Version
https://education.scinet.utoronto.ca/mod/assign/view.php?
id=2606

• Repository, containing assignment handout and starter code:
https://github.com/Practical-Scientific-and-HPC-Computing/
Traffic_EduHPC-23

B HANDOUT
The following pages contain the assignment’s handout, which is
also accessible from the public GitHub repository, https://github.
com/Practical-Scientific-and-HPC-Computing/Traffic_EduHPC-23

https://education.scinet.utoronto.ca/course/view.php?id=1155
https://education.scinet.utoronto.ca/course/view.php?id=1155
https://education.scinet.utoronto.ca/mod/assign/view.php?id=2605
https://education.scinet.utoronto.ca/mod/assign/view.php?id=2605
https://education.scinet.utoronto.ca/mod/assign/view.php?id=2606
https://education.scinet.utoronto.ca/mod/assign/view.php?id=2606
https://github.com/Practical-Scientific-and-HPC-Computing/Traffic_EduHPC-23
https://github.com/Practical-Scientific-and-HPC-Computing/Traffic_EduHPC-23
https://github.com/Practical-Scientific-and-HPC-Computing/Traffic_EduHPC-23
https://github.com/Practical-Scientific-and-HPC-Computing/Traffic_EduHPC-23

Parallelizing the 1-Dim Nagel-Schreckenberg Traffic Model R. van Zon, M. Ponce

Parallelizing the 1-Dim Nagel-Schreckenberg Traffic Model
The Nagel-Schreckenberg traffic model
The Nagel-Schreckenberg traffic model (Nagel and Schreckenberg 1992) is a 1D toy model used to generate traffic-like
behaviour. This model is simple enough to avoid getting distracted with the details of its abstraction but to
nonetheless demonstrate interesting emerging properties, such as congestion or stagnation points.

To describe the details of this model we will use dimensionless quantities, meaning that position, velocity and time,
all have the same “units”.

The model in this case is 1-dimensional (1-D), which means that there is only one spatial coordinate, which denotes
the position of the cars along it. In the model, each car has a position x and a velocity v which evolve in time as
follows:

1. If the velocity v is below a maximum velocity, vmax, then increase v by 1 (try to speed up).

2. If the car in front of the given car is at distance d away, and v ≥ d, then reduce v to d− 1 – we don’t want to
hit the car.

3. Add randomness: if v > 0 then with probability p the car reduces its speed by 1.

4. The car moves ahead by v steps (on a circular track).

These four rules can be summarized as,




v ← min (v + 1, vmax)
v ← min (v, d− 1)
v ← (0, v − 1) with probability p
x ← x + v

where ← means that the quantity on the left side of the arrow is updated with the prescription on the right side of it.

Hence, this model can be fully characterized by the following parameters:

• vmax, maximum allowed velocity;
• N , number of cars on the model;
• L, length of the road/track;
• p, threshold probability to decrease current velocity.

In case you are not familiar with using randomness – the ideas, concepts and algorithms are quite complex and
involved, and a topic of ongoing research efforts. But in this particular case, it can be done in a relatively
straightforward way:

• Draw a random number r using a PRNG with uniform distribution on [0, 1).

• For any chosen value p ∈ [0, 1), the chance that r is less than that value, is p itself.

• So if r is less than p, we will accept the move and decrease v if possible.

• If r is greater than or equal to p, we leave v as it is, i.e., we reject the move.

It should be also noted that without the inclusion of randomness in the model (i.e. rule #3), the model would be
deterministic, i.e. the cars will all evolve preserving the pattern as is set in the initial configuration.

Although this is a simple model, it has very rich dynamics and emerging properties, and has been used as foundations
for more comprehensive models.

Starter Code
For this assignment we provide a starter serial code, which can be found in the following repository:

https://github.com/Practical-Scientific-and-HPC-Computing/Traffic_EduHPC-23

August 15, 2023 | https://github.com/Practical-Scientific-and-HPC-Computing/Traffic_EduHPC-23 1/5

Parallelizing the 1-Dim Nagel-Schreckenberg Traffic Model R. van Zon, M. Ponce

The code simulates the dynamics of the Nagel-Schreckenberg traffic model for a set of cars that start from random
positions on a road with periodic boundary conditions. This periodic boundary condition can be thought of as an
approximation of a very long road, or as a circular road (i.e., a round-about). It implies that there is no incoming
and outgoing motion of vehicles.

The code generates three files in the numpy array format, with their names given by the outputprefix parameter
from the parameter file. For instance, if outputprefix is set to ‘traffic’, the files ‘traffic-dens.npy’, ‘traffic-time.npy’
and ‘traffic-velo.npy’, will contain the resulting positions, time and velocity of the cars for the simulation.

The code takes its simulation parameters from a parameter file which is specified as a command line argument. The
parameter is a plain-text file containing the following parameters:
L = number of positions in the road (e.g. 500)
T = total number of time steps (e.g. 500)
N = number of cars in the road (e.g. 300)
p = probability of slowing down (e.g. 0.2)
vmax = maximum velocity (e.g. 2)
seed = random number seed (e.g. 13)
outputprefix = prefix for the name of the files to save the data (e.g. "traffic")
per = number of iterations how often output is done (e.g. 10)

The code is written in C/C++ using the C++17 standard.

For Pseudo-Random Number Generation (PRNG) it uses the ‘random’ library from the C++ standard library.

We also include a python script npyplot.py to visualize the results from the simulation, which will a generate an
image similar to the one shown in Fig.1.

The starter code is located in the code directory of this repository. The code is written in a modular fashion,
with well defined modules to do specific tasks.

This the full list of files from the Code directory:

Filename Description
Makefile make file
CMakeLists.txt cmake file
—————— ——————————————–
README.md README file
—————— ——————————————–
test.ini parameter file for testing and reference case
largetest.ini parameter file for longer and more demanding runs
—————— ——————————————–
reference-test.png image with results from the reference case
—————— ——————————————–
npyplot.py python script for visualizing results from the simulation
—————— ——————————————–
npywriter.cpp writing routine module
npywriter.h corresponding header file
parameters.cpp parsing and processing of parameters module
parameters.h corresponding header file
traffic.cpp main driver function

Most of the relevant code and functions for the assignment (with the exception of the IO routines) are in the
traffic.cpp file.

August 15, 2023 | https://github.com/Practical-Scientific-and-HPC-Computing/Traffic_EduHPC-23 2/5

Parallelizing the 1-Dim Nagel-Schreckenberg Traffic Model R. van Zon, M. Ponce

How to compile and run the code
You need a relatively recent g++ compiler (version 9 or above), make or cmake for compilation, and a
python 3 installation with numpy , matplotlib , and plotly version 5 or above, to use the npyplot.py
script for generating PNG files and generating interactive and HTML visualizations.

To compile the code, type
make

The Makefile also contains commands to run and plot results.

To run the smaller test case and plot the results in the form an png files, use
make test

To run the larger case and plot the results in the form an png files, use
make largetest

The parameters are set in .ini files that can be given as command line arguments, e.g.:
./traffic test.ini

Output is in 3 files, two with postfixes -dens.npy , -velo.npy that contain the density and velocity of the
traffic on a grid at the times stored in the file with postfix -time.npy . These are in the binary numpy array
format, which can be read e.g., by the npyplot.py script. This scripts needs the same parameter file as the
simulation executable, so it can identify the resulting files and parameters used in the run, e.g.

python3 npyplot.py test.ini

The npyplot.py script can generate different formats for the plots. Using a second optional argument to the
script, one could generate PNG (default or png), interactive in browser (interactive) or HTML (html)
formats. E.g.

python3 npyplot.py test.ini interactive

WARNING the interactive visualization is a beta feature and may not work as expected with large datasets.

IMPORTANT
You should carefully look at the code, it is properly commented and documented. You must understand the code as
many details of the implementation are critical for solving the assignment.

You should note that this is an agent-based implementation, i.e., an implementation that keeps track of the positions
and velocities of the N cars as (two) vectors of length N . An alternative representation, the grid representation,
which assigns a value to every point on the road of length L would be another possible way to tackle this problem,
here is only used in the output routines.

Pay utmost attention to the random number generation. In our implementation, in spite of some of the short
coming and disadvantages it may have compared to other PRNG methods, we use a multiplicative linear congruent
generator, due to its ease of implementing a better discard method.

August 15, 2023 | https://github.com/Practical-Scientific-and-HPC-Computing/Traffic_EduHPC-23 3/5

Parallelizing the 1-Dim Nagel-Schreckenberg Traffic Model R. van Zon, M. Ponce

THE ASSIGNMENT: Parallelize the 1-D Nagel-Schreckenberg
Traffic Model
The aim of this assignment is to parallelize the Nagel-Schreckenberg model, for which we will use the starter code
described before.

Your task is as follows:

1. Speed up this code using shared-memory parallelism, by adding OpenMP directives and thread-safe
mechanisms for the pseudo-random number generator.

Remember to always use default(none) in pragma omp parallel directives, as well as include
the appropriate compilation flags.

You can start with the often-used approach of having a different seed for the random number generator
of each thread, but this will break reproducibility across different number of threads.

Then, you must pay particular attention to how to treat and deal with the PRNG, specifically to
guarantee the reproducibility of the results for the different implementations. I.e. as the seed of the
PRNG engine is set in the parameter file, it is expected that for a given seed the results of serial and
parallel runs should match when running on the same hardware independent of the number of threads
used.

To assess reproducibility, we suggest to use the test.ini parameters and visualize the results with
python npyplot.py test.ini

2. Run a strong scaling analysis for your implementation for the parameters in the largetest.ini file for
increasing numbers of threads. Set per=0 in the ini file to focus on how the computation scales. If you are
running on a HPC system (e.g. supercomputer or cluster), create a submission script to submit your runs as
jobs and automate the timing measurements.

3. Make a plot of the speedups as a function of the number of threads. Check if it is possible to estimate the
serial fraction f using Amdahl’s law.

4. Create a weak scaling analysis by creating several cases of increasing values of L and N that are run with
proportionally increasing number of threads. Create a plot of their runtime vs. number of threads.

5. Write a report based on the outcomes of the scaling analysis and the results from your previous estimate.

Optional:

6. Do a performance analysis to determine which parts of the program are the most expensive ones.

7. Focus on the I/O functions and look for opportunities for improvement by parallelizing them. Repeat the
scaling analysis now with output enabled.

Nagel, Kai, and Michael Schreckenberg. 1992. “A Cellular Automaton Model for Freeway Traffic.” Journal de
Physique I 2 (12): 2221–9.

August 15, 2023 | https://github.com/Practical-Scientific-and-HPC-Computing/Traffic_EduHPC-23 4/5

Parallelizing the 1-Dim Nagel-Schreckenberg Traffic Model R. van Zon, M. Ponce

Figure 1: Visualization of the reference test case included with the starter code. Plots generated using the
npyplot.py script.

August 15, 2023 | https://github.com/Practical-Scientific-and-HPC-Computing/Traffic_EduHPC-23 5/5

	Abstract
	1 Rationale
	2 Concepts Covered
	3 Limitations
	4 Variations
	References
	A Online Resources
	B Handout

